Skillnad mellan versioner av "1.3 Övningar till Rationella uttryck"

Från Mathonline
Hoppa till: navigering, sök
m
m (Övning 4)
 
(2 mellanliggande versioner av samma användare visas inte)
Rad 18: Rad 18:
 
<div class="ovning">
 
<div class="ovning">
 
För vilka värden på <math> x \, </math> är uttrycken nedan definierade och för vilka är de inte definierade?
 
För vilka värden på <math> x \, </math> är uttrycken nedan definierade och för vilka är de inte definierade?
+
 
 +
 
 
a) <big><big><math> {\color{White} x} {x^2 + 1 \over 3\,x - 6} </math></big></big>
 
a) <big><big><math> {\color{White} x} {x^2 + 1 \over 3\,x - 6} </math></big></big>
  
Rad 29: Rad 30:
  
 
d) <big><big><math> {\color{White} x} {4\,x^4 -6\,x^2 + 1 \over x^2 - 16} </math></big></big>
 
d) <big><big><math> {\color{White} x} {4\,x^4 -6\,x^2 + 1 \over x^2 - 16} </math></big></big>
 
  
 
</div>{{#NAVCONTENT:Svar 1a|1.4 Svar 1a|Lösning 1a|1.4 Lösning 1a|Svar 1b|1.4 Svar 1b|Lösning 1b|1.4 Lösning 1b|Svar 1c|1.4 Svar 1c|Lösning 1c|1.4 Lösning 1c|Svar 1d|1.4 Svar 1d|Lösning 1d|1.4 Lösning 1d}}
 
</div>{{#NAVCONTENT:Svar 1a|1.4 Svar 1a|Lösning 1a|1.4 Lösning 1a|Svar 1b|1.4 Svar 1b|Lösning 1b|1.4 Lösning 1b|Svar 1c|1.4 Svar 1c|Lösning 1c|1.4 Lösning 1c|Svar 1d|1.4 Svar 1d|Lösning 1d|1.4 Lösning 1d}}
 
<!-- Alternativt:
 
<!-- Alternativt:
:<small><small>[[1.4 Svar 1a|Svar 1a]] | [[1.4 Lösning 1a|Lösning 1a]] | [[1.4 Svar 1b|Svar 1b]] | [[1.4 Lösning 1b|Lösning 1b]] | [[1.4 Svar 1c|Svar 1c]] | [[1.4 Lösning 1c|Lösning 1c]] | [[1.4 Svar 1d|Svar 1d]] | [[1.4 Lösning 1d|Lösning 1d]]</small></small>
+
:<small><small>[[1.4 Svar 1a|Svar 1a]] | [[1.4 Lösning 1a|Lösning 1a]] | [[1.4 Svar 1b|Svar 1b]] | [[1.4 Lösning 1b|Lösning 1b]] | [[1.4 Svar 1c|Svar 1c]] | [[1.4 Lösning 1c|Lösning 1c]] | [[1.4 Svar 1d|Svar 1d]] | [[1.4 Lösning 1d|Lösning 1d]]</small></small> -->
-->
+
  
 
== Övning 2 ==
 
== Övning 2 ==
Rad 59: Rad 58:
 
<div class="ovning">
 
<div class="ovning">
 
Förkorta följande uttryck så långt som möjligt, om det går:
 
Förkorta följande uttryck så långt som möjligt, om det går:
 +
  
 
a) <big><big><math> {\color{White} x} {20\,x^3\,y^2 \over 4\,x^2\,y} </math></big></big>
 
a) <big><big><math> {\color{White} x} {20\,x^3\,y^2 \over 4\,x^2\,y} </math></big></big>
Rad 76: Rad 76:
 
<div class="ovning">
 
<div class="ovning">
 
Förenkla följande uttryck så långt som möjligt:
 
Förenkla följande uttryck så långt som möjligt:
 +
  
 
a) <big><big><math> {\color{White} x} {x - y \over y - x} </math></big></big>
 
a) <big><big><math> {\color{White} x} {x - y \over y - x} </math></big></big>
Rad 84: Rad 85:
 
</div>{{#NAVCONTENT:Svar 4a|1.4 Svar 4a|Lösning 4a|1.4 Lösning 4a|Svar 4b|1.4 Svar 4b|Lösning 4b|1.4 Lösning 4b}}
 
</div>{{#NAVCONTENT:Svar 4a|1.4 Svar 4a|Lösning 4a|1.4 Lösning 4a|Svar 4b|1.4 Svar 4b|Lösning 4b|1.4 Lösning 4b}}
 
<!-- Alternativt:
 
<!-- Alternativt:
:<small><small>[[1.4 Svar 4a|Svar 4a]] | [[1.4 Lösning 4a|Lösning 4a]] | [[1.4 Svar 4b|Svar 4b]] | [[1.4 Lösning 4b|Lösning 4b]]</small></small>
+
:<small><small>[[1.4 Svar 4a|Svar 4a]] | [[1.4 Lösning 4a|Lösning 4a]] | [[1.4 Svar 4b|Svar 4b]] | [[1.4 Lösning 4b|Lösning 4b]]</small></small> -->
-->
+
  
 
== Övning 5 ==
 
== Övning 5 ==

Nuvarande version från 30 oktober 2014 kl. 14.47

       Repetition: Bråkräkning          Teori          Övningar          Fördjupning          Nästa avsnitt -->      

<-- Förra avsnitt


E-övningar: 1-6


Övning 1

För vilka värden på \( x \, \) är uttrycken nedan definierade och för vilka är de inte definierade?


a) \( {\color{White} x} {x^2 + 1 \over 3\,x - 6} \)


b) \( {\color{White} x} {x^2 - 5\,x + 3 \over (x+6) \cdot (x-1)} \)


c) \( {\color{White} x} {x^3 + 3\,x^2 -8\,x - 1 \over x^2 + 1} \)


d) \( {\color{White} x} {4\,x^4 -6\,x^2 + 1 \over x^2 - 16} \)

Övning 2

Beräkna exakt

a) \( {\color{White} x} f(3)\, \) om \( \, f(x) = \) \( {x^2 - 4\,x + 3 \over 2\,x^2 + 3} \)


b) \( {\color{White} x} g(2)\, \) om \( \, g(t) = \) \( {3\,t^2 - 2\,t \over t\,(t+1)} \)


c) \( {\color{White} x} h(-1)\, \) om \( h(x) = \) \( {x^3 - x^2 - 1 \over x^3 + x^2 + x} \)


d) \( {\color{White} x} f(-1)\, \) om \( f(z) = \) \( {z^3 - z^2 - z - 1 \over z^3 + z^2 + z + 1} \)

Övning 3

Förkorta följande uttryck så långt som möjligt, om det går:


a) \( {\color{White} x} {20\,x^3\,y^2 \over 4\,x^2\,y} \)


b) \( {\color{White} x} {x^2\,(x + y) \over x} \)


c) \( {\color{White} x} {x\,(x - y) \over y} \)

Övning 4

Förenkla följande uttryck så långt som möjligt:


a) \( {\color{White} x} {x - y \over y - x} \)


b) \( {\color{White} x} {6\,(x-2)^2 \over 3\,x - 6} \)

Övning 5

Förenkla följande uttryck så långt som möjligt:


a) \( {\color{White} x} {x \over 3} + {x \over 2} - {x \over 6} \)


b) \( {\color{White} x} {2 \over x} + {3 \over x^2} + {4 \over x^3} \)


c) \( {\color{White} x} {3 \over a\,-\,2} - {a\,+\,7 \over 6\,-\,3\,a} \)

Övning 6

Förenkla följande uttryck så långt som möjligt:


a) \( {\color{White} x} {3\,(y\,-\,3) \over 8\,y} \cdot {24\,y \over y\,-\,3} \)


b) \( {\color{White} x} {x\,+\,y \over x^2} \cdot {x\,y \over x\,+\,y} \)


c) \( {\color{White} x} \left({2\,a\,-\,4 \over a^2}\right)\, \Big / \,\left({a^2\,-\,4 \over a^4}\right) \)


C-övningar: 7-9


Övning 7

Förenkla följande uttryck så långt som möjligt:


a) \( {\color{White} x} {x^2\,-\,25 \over 8\,x^2\,-\,40\,x} \)


b) \( {\color{White} x} {3\,x^2\,-\,12\,x \over x^2\,-\,6\,x\,+\,8} \)


c) \( {\color{White} x} {1\,-\,x\,y \over (x\,y)^2\,-\,x\,y} \)

Övning 8

Förenkla uttrycken i a) och b) så långt som möjligt:

a) \( {\color{White} x} {6\,x \over 4 - 9\,x^2} - {1 \over 2 -3\,x} \)


b) \( {\color{White} x} {1-x \over x+1} - {1+x \over 1-x} + {4\,x \over 1-x^2} \)


c) För vilket värde på \( z\, \) har följande ekvation lösningen \( x = 2\, \)\[ {15\,x^2 - 2\,x - 6 \over 6} = {x - 3\,z \over 2} - {z - 2\,x^2 \over 3} - {z \over x} \]

Övning 9

Förenkla följande uttryck så långt som möjligt:

a) \( {\color{White} x} \left({1 \over 2\,x\,-\,1} + {1 \over 2\,x\,+\,1}\right) \cdot {2\,x\,+\,1 \over 2\,x} \)


b) \( {\color{White} x} \left({a^2\,-\,6\,a\,+\,9 \over b^6}\right)\, \Big / \,\left({a\,-\,3 \over b^5}\right) \)


c) \( {\color{White} x} \left(1 - {x^2 \over y^2}\right)\, \Big / \,\left(1 - {x \over y}\right) \)


A-övningar: 10-12

Övning 10

Förenkla så långt som möjligt:

\[ {2\,x^2 - x^3 \over 2\,x^2 - 8} - {x \over x+2} + {x+2 \over 2} \]

Övning 11

En rationell funktion är given:

\[ f(x) = {x+2 \over x^2 - x - 6} \]

a) Faktorisera nämnaren och skriv \( f(x)\, \) med faktoriserad nämnare.

Läs om Hävbara och icke-hävbara diskontinuiteter för att kunna lösa b)-d).

b) Ange de värden på \( x\, \) för vilka \( f(x)\, \) inte är definierad (funktionens diskontinuiteter). Ange \(\, f(x)\):s hävbara och icke-hävbara diskontinuiteter.

c) Ange en funktion \( g(x)\, \) som inte längre har \(\, f(x)\):s hävbara diskontinuitet, men är annars identisk med \( f(x)\, \).

d) Rita graferna till \( f(x)\, \) och \( g(x)\, \). Kan man av grafernas utseende dra slutsatsen att funktionerna är identiska? Motivera ditt svar.

Övning 12

Lös följande ekvation:

\[ {\color{White} x} v - {u \over u\,v\,+\,v\,x} = {v\,x^2 \over x^2\,-\,u^2} + {u\,v^2 \over v\,x\,+\,u\,v} \]


där \( u\, \) och \( v\, \) är givna konstanter och \( x\, \) ekvationens obekant. Lösningen kommer därför att bli ett rationellt uttryck i \( u\, \) och \( v\, \).




Copyright © 2011-2014 Taifun Alishenas. All Rights Reserved.