Övningar till Logaritmlagarna
Teori | Övningar |
G-övningar: 1-4
Övning 1
Beräkna på två olika sätt, först utan och sedan med logaritmlagar. Avrunda till 4 decimaler. Jamför och tolka resultaten\[ \,\log \]-knappen i räknaren står för 10-logaritmen. Slå in t.ex. \( \log\,(3) \) för att beräkna \( \lg\,3 \) .
a) \( \lg\,(3 \cdot 4) \)
b) \( \lg\,{1 \over 2} \)
c) \( \lg\,(5^2) \)
d) \( \lg\,{7 \over 2} + \lg\,(9^{1\over2}) \)
Alternativt:
- Svar 1a | Lösning 1a | Svar 1b | Lösning 1b | Svar 1c | Lösning 1c | Svar 1d | Lösning 1d
Övning 2
Fyll i först de platser som är markerade med frågetecken.
Beräkna sedan uttrycken till vänster och höger om likhetstecknet. Ange svaret med 5 decimaler.
a) \( \lg 36 \; = \; \lg 4 + \lg \, ? \)
b) \( \lg 4 \; = \; \lg 8 - \lg \, ? \)
c) \( \lg\,9 \; = \; ? \; \cdot\; \lg 3 \)
d) \( \lg 1 + \lg 10 \; = \; \lg \, ? \)
e) \( \lg 16 - \lg 4 \; = \; \lg \, ? \)
f) \( 3 \cdot \lg 2 \; = \; \lg \, ? \)
Alternativt:
- Svar 2a | Lösning 2a | Svar 2b | Lösning 2b | Svar 2c | Lösning 2c | Svar 2d | Lösning 2d | Svar 2e | Lösning 2e | Svar 2f | Lösning 2f
Övning 3
Lös följande ekvationer med 6 decimalers noggrannhet. Hur skulle du svara om det hade varit krav på exakt lösning?
a) \( 2^x = 35\, \)
b) \( 5 \cdot 1,09^x = 25 \)
c) \( 4^x + 4^{x+1} = 85\, \)
Alternativt:
- Svar 3a | Lösning 3a | Svar 3b | Lösning 3b | Svar 3c | Lösning 3c
Övning 4
Är följande förenklingar korrekta? Om inte, korrigera dem:
a) \( \lg 54 - \lg 38 = {\lg 54 \over \lg 38 } \)
b) \( \lg\,(3\,x^5) = 5 \cdot \lg 3\,x \)
c) \( \lg\,{3 \over 2} + \lg\,{2 \over 3} = 0 \)
d) \( \lg\,0,2 = \lg\,2 - 1 \)
Alternativt:
- Svar 4a | Lösning 4a | Svar 4b | Lösning 4b | Svar 4c | Lösning 4c | Svar 4d | Lösning 4d
VG-övningar: 5-6
Övning 5
Lös följande ekvationer exakt:
a) \( 5 \cdot 6^x \; = \; 7^x \)
b) \( 2 \cdot 3^x \; = \; 4 \cdot 5^x \)
c) \( \lg\,(x+1) + \lg\,(x-1) = \lg 3 - \lg 4 \)
Alternativt:
- Svar 5a | Lösning 5a | Svar 5b | Lösning 5b | Svar 5c | Lösning 5c
Övning 6
En ny bil köptes för 325 000 kr. Värdeminskningen är exponentiell och uppskattas till 17% per år.
a) Ställ upp en exponentialfunktion som en modell för bilens värdeminskning.
Använd modellen för att besvara följande frågor:
b) Hur mycket var bilen värd efter 2 år?
c) Efter hur många år och månader är bilens värde 100 000?
Alternativt:
- Svar 6a | Lösning 6a | Svar 6b | Lösning 6b | Svar 6c | Lösning 6c
MVG-övningar: 7-8
Övning 7
Landet A hade år 1990 42,5 miljoner invånare med en tillväxttakt på 2,8% per år.
Landet B hade samma år 63,7 miljoner invånare med en tillväxttakt på 0,3% per år.
Man antar att befolkningstillväxten i dessa länder är exponentiell.
Hur lång tid tar det tills båda länderna har lika många invånare? Ange svaret i antal år och avrundat antal månader.
Alternativt:
Övning 8
Mellan energin E som frigjörs vid en jordbävning och dess magnitud M på Richterskalan gäller följande samband:
- \[ M \; = \; {2 \over 3}\,\left(\lg\,E - {22 \over 5}\right) \]
I mars 2011 drabbades Japan av en jordbävning med magnituden M = 9,1 på Richterskalan.
Beräkna den frigjorda energin E.
Kalle hävdar att denna energimängd är av samma storleksordning som hela Sverige förbrukar på ett år.
Frivillig: Sök på Internet efter information om Sveriges energiförbrukning för att kontrollera om Kalles påstående stämmer.
Alternativt:
Copyright © 2010-2011 Taifun Alishenas. All Rights Reserved.