Skillnad mellan versioner av "1.3 Rationella uttryck"

Från Mathonline
Hoppa till: navigering, sök
m (Vad är ett rationellt uttryck?)
m
 
(368 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[Repetition Bråkräkning från Matte 1|Repetition Bråkräkning]]}}
+
{{Not selected tab|[[1.3 Repetition Bråkräkning från Matte 1|Repetition: Bråkräkning]]}}
 
{{Selected tab|[[1.3 Rationella uttryck|Teori]]}}
 
{{Selected tab|[[1.3 Rationella uttryck|Teori]]}}
 
{{Not selected tab|[[1.3 Övningar till Rationella uttryck|Övningar]]}}
 
{{Not selected tab|[[1.3 Övningar till Rationella uttryck|Övningar]]}}
 
{{Not selected tab|[[1.3 Fördjupning till Rationella uttryck|Fördjupning]]}}
 
{{Not selected tab|[[1.3 Fördjupning till Rationella uttryck|Fördjupning]]}}
{{Not selected tab|[[1.3 Internetlänkar till Rationella uttryck|Internetlänkar]]}}
+
{{Not selected tab|[[1.4 Talet e: Exponentialfunktionen med basen e och den naturliga logaritmen|Nästa avsnitt -->]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"|  
 
| style="border-bottom:1px solid #797979"  width="100%"|  
 
|}
 
|}
 +
[[1.2 Faktorisering av polynom|<span style="color:blue"><-- Förra avsnitt</span>]]
  
  
 +
[[Media: Lektion 5 Rationella uttryck Ruta.pdf|<strong><span style="color:blue">Lektion 5 Rationella uttryck</span></strong>]]
  
[[Media: Lektion 8 Rationella uttryck 2.pdf|Lektion 8 Rationella uttryck II]]
+
[[Media: Lektion 6 Rationella uttryckFb Ruta.pdf|<strong><span style="color:blue">Lektion 6 Rationella uttryck: Fördjupning</span></strong>]]
  
 
__TOC__
 
__TOC__
 +
  
 
== Vad är ett rationellt uttryck? ==
 
== Vad är ett rationellt uttryck? ==
  
Ett <strong><span style="color:red">rationellt tal</span></strong> är kvoten (resultatet av division) mellan två heltal med undantaget <math> 0 </math> i nämnaren, t.ex.:
+
Ett <strong><span style="color:red">heltal</span></strong> är ett tal ur mängden <math> \left\{ \dots, -3, -2, -1, \,0,\, 1,\, 2,\, 3, \dots \right\} </math> dvs alla negativa heltal, noll och alla positiva heltal.
 +
 
 +
Ett <strong><span style="color:red">rationellt tal</span></strong> är ett [[Repetition_Bråkräkning_från_Matte_1|<strong><span style="color:blue">tal i bråkform</span></strong>]], dvs kvoten (resultatet av division) mellan två heltal med undantaget <math> 0\, </math> i nämnaren, t.ex.:
  
 
:::::::::<math> 3 \over 4 </math>
 
:::::::::<math> 3 \over 4 </math>
  
Med andra ord är rationellt tal en annan beteckning för tal i bråkform. Nästan alla heltal kan förekomma i täljaren och nämnaren av ett rationellt tal. Det enda undantaget är 0 i nämnaren, för division med 0 ger inget tal och är därför odefinierad.
+
Noll får inte förekomma i nämnaren, för division med <math> 0\, </math>, t.ex. <big><big><math> 3 \over 0 </math></big></big> är inte definierad, se [[1.3_Fördjupning_till_Rationella_uttryck#Varf.C3.B6r_.C3.A4r_division_med_0_inte_definierad.3F|<strong><span style="color:blue">Fördjupning: Varför är division med 0 inte definierad?</span></strong>]].
  
Ett <strong><span style="color:red">rationellt uttryck</span></strong> är kvoten mellan två [[1.2 Polynom|polynom]], t.ex.:
+
Ett <strong><span style="color:red">rationellt uttryck</span></strong> är kvoten mellan två [[1.2 Polynom|<strong><span style="color:blue">polynom</span></strong>]], t.ex.:
  
 
::::::::<math> 6\,x \over x^2 - 1 </math>
 
::::::::<math> 6\,x \over x^2 - 1 </math>
  
Att polynomet <math> x^2 - 1 </math> står i nämnaren har vissa konsekvenser. Precis som hos bråk får nämnaren, som i det här fallet är polynomet <math> x^2 - 1 </math>, inte vara 0. I vårt exempel innebär det att x varken får vara 1 eller -1, för då blir nämnaren, dvs polynomet <math> x^2 - 1 </math>:s värde, 0 och därmed odefinierat. Följaktligen blir även hela uttryckets värde odefinierat. Man säger, det rationella uttrycket ovan är definierat för alla x utom för <math> x = 1 </math> och <math> x = -1 </math>.
+
Nämnaren <math> x^2 - 1\, </math> får inte vara <math> 0\, </math>. Detta innebär att <math> x\, </math> varken får vara <math> 1\, </math> eller <math> -1\, </math>, för då blir polynomet <math> x^2 - 1\, </math>:s värde <math> 0\, </math> och därmed inte definierat.
 +
 
 +
Följaktligen blir även hela uttryckets värde inte definierat. Man säger, det rationella uttrycket ovan är definierat för alla <math> x\, </math> utom för <math> x = 1\, </math> och <math> x = -1\, </math>.  
 +
 
 +
Uttryckets <strong><span style="color:red">definitionsmängd</span></strong>, dvs alla <math> x\, </math> för vilka uttrycket är definierad, är:
 +
 
 +
::<math> {\rm Alla}\quad x \quad {\rm med} \quad x \neq 1 \quad {\rm och} \quad x \neq -1 </math>
 +
 
 +
Analogin (motsvarigheten) mellan heltal och polynom å ena och rationellt tal och rationellt uttryck å andra sidan kommer att gå som en röd tråd genom hela detta avsnitt, t.ex. när vi räknar med rationella uttryck:
 +
 
 +
 
 +
== Addition & subtraktion av rationella uttryck ==
 +
 
 +
Analogin som nämndes ovan innebär bl.a. att räknereglerna för rationella uttryck är en naturlig fortsättning av de regler som gäller för räkning med bråktal, fast på ett högre plan.
 +
 
 +
Man kan säga att räknereglerna för rationella uttryck är generaliseringar av bråkräkningens regler. Därför kan samma principer som gäller för bråkräkning, användas för räkning med rationella uttryck. Därför:
 +
 
 +
::::::<Big><strong>Repetera [[Repetition_Bråkräkning_från_Matte_1|<span style="color:blue">bråkräkning</span>]] från Matte 1.</strong></Big>
 +
 
 +
 
 +
Vi ska nu använda bråkräkningens regler för att addera och subtrahera rationella uttryck:
 +
 
 +
 
 +
=== Exempel 1 ===
 +
 
 +
Förenkla uttrycket <big><big><math> {\color{White} a} {5 \over 2\,x} \, - \, {4 \over 3\,x} {\color{White} a} </math></big></big> så långt som möjligt.
 +
 
 +
:::::::<math> {5 \over 2\,x} \, - \, {4 \over 3\,x} \; = \; {\;5 \;\,\cdot {\color{Red} {3\,x}} \over 2\,x \cdot {\color{Red} {3\,x}}} \, - \, {\;4 \;\,\cdot {\color{Red} {2\,x}} \over 3\,x \cdot {\color{Red} {2\,x}}} \; = \; {\;15\,x \over 6\,x^2} \, - \, {\;8\,x \over 6\,x^2} \; = \; {\;15\,x - 8\,x \over 6\,x^2} \; = \; {7\,x \over 6\,x^2} \; = \; {7 \over 6\,x} </math>
 +
 
 +
 
 +
=== Exempel 2 ===
 +
 
 +
Förenkla uttrycket <big><big><math> {\color{White} a} {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} {\color{White} a} </math></big></big> så långt som möjligt.
 +
 
 +
:::::::<math> {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} \; = \; {\;\;7 \;\;\,\cdot {\color{Red} {2\,x^2}} \over 12\,x \cdot {\color{Red} {2\,x^2}}} \, - \, {\;\,3 \;\;\,\cdot {\color{Red} {3\,x}} \over 8\,x^2 \cdot {\color{Red} {3\,x}}} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 \over 24\,x^3} \, - \, {9\,x \over 24\,x^3} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 - 9\,x + 7 \over 24\,x^3} </math>
 +
 
 +
 
 +
=== Hjälpsats ===
 +
 
 +
::::::<big><math> a\,-\,b \; = \; -\,(b\,-\,a) </math></big>
 +
 
 +
Bevis: <big><math> {\color{White} x} \qquad\qquad a\,-\,b \; = \; -\,b\,+\,a \; = \; -\,(b\,-\,a) </math></big>
 +
 
 +
Annan formulering: <big><math> {\color{White} x} \, b\,-\,a \; = \; -\,(a\,-\,b) </math></big>
 +
 
 +
 
 +
=== Exempel 3 ===
 +
 
 +
Förenkla uttrycket <big><big><math> {\color{White} a} {2 \over a-b} \, - \, {1 \over b-a} {\color{White} a} </math></big></big> så långt som möjligt.
 +
 
 +
:::::::<math> {2 \over a-b} \, - \, {1 \over b-a} \; = \; {2 \over a-b} \, - \, {1 \over - \, (a-b)} \; = \; {2 \over a-b} \, + \, {1 \over a-b} \; = \; {2 \, + \, 1 \over a-b} \; = \; {3 \over a-b} </math>
 +
 
 +
 
 +
=== <span style="color:blue">Repetition: Kvadreringsreglerna & konjugatregeln</span> ===
 +
----
 +
 +
::<math>\begin{align} {\rm 1:a \,\, kvadreringsregeln} \qquad          (a+b)^2 & = a^2 + 2\,a\,b + b^2  \\
 +
                      {\rm 2:a \,\, kvadreringsregeln} \qquad          (a-b)^2 & = a^2 - 2\,a\,b + b^2  \\
 +
                      {\rm \,Konjugatregeln}          \qquad (a+b) \cdot (a-b) & = a^2 - b^2
 +
  \end{align}</math>
 +
 
 +
----
 +
I exemplen som följer används dessa regler flitigt.
 +
 
 +
 
 +
=== Exempel 4 ===
 +
 
 +
Förenkla uttrycket <big><big><math> {\color{White} a} {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} {\color{White} a} </math></big></big> så långt som möjligt.
 +
 
 +
Redan i första steget används [[1.3_Rationella_uttryck#Repetition:_Kvadreringsreglerna_.26_konjugatregeln|<strong><span style="color:blue">konjugatregeln (baklänges)</span></strong>]] för att faktorisera den första termens nämnare:
 +
 
 +
:<math> {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \over (2-x)\cdot x} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \, \over - \, (x-2)\cdot x} \; = \; </math>
 +
 
 +
:<math> = \; {2 \over (x+2)\cdot(x-2)} \, + \, {-1 \over (x-2)\cdot x} \; = \; {\qquad\quad 2 \qquad\quad\;\cdot {\color{Red} x} \over (x+2)\cdot(x-2) \cdot {\color{Red} x}} \; + \; {{\color{Red} {(x+2)}}\cdot \quad\, (-1) \quad\, \over {\color{Red} {(x+2)}}\cdot (x-2)\cdot x} \; = \; </math>
 +
 
 +
:<math> = \; {2\,x \; + \; (x+2) \cdot (-1) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x \; + \; (-x-2) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x - x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = </math>
 +
 
 +
:<math> = \; {x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {1 \over x \; (x+2)} </math>
 +
 
 +
 
 +
== Multiplikation & division av rationella uttryck ==
 +
 
 +
Här ska vi använda bråkräkningens regler för att multiplicera och dividera rationella uttryck:
 +
 
 +
 
 +
=== Exempel 1 ===
 +
 
 +
Förenkla uttrycket <big><big><math> {\color{White} a} {15 \over x^2} \cdot {x \over 3} </math></big></big>
 +
 
 +
:::::::<math> {15 \over x^2} \cdot {x \over 3} \; = \; {15 \cdot x \over x^2 \cdot 3} \; =\; {{\color{Red} 3} \cdot 5 \cdot {\color{Blue} x} \over {\color{Blue} x} \cdot x \cdot {\color{Red} 3}} \; = \; {5 \over x} </math>
 +
 
  
Man utvidgar talbegreppet från heltal till bråktal för att kunna ange t.ex. ett tal som löser ekvationen:
+
=== Exempel 2 ===
  
:::::::<math>\begin{align} 4 \cdot x & = 3          \\
+
Förenkla uttrycket <big><big><math> {\color{White} a} {5\,x^2 \over 12} \cdot {3 \over 20\,x} </math></big></big>
                                        x & = {3 \over 4} \\  
+
        \end{align} </math>
+
  
Det sökta talet blir då just det rationella tal (bråk) ovan som inte längre är ett heltal.
+
:::::::<math> {5\,x^2 \over 12} \cdot {3 \over 20\,x} \; = \; {5\,x^2 \cdot 3 \over 12 \cdot 20\,x} \; =\; {{\color{Blue} 5 \cdot x} \cdot x \cdot {\color{Red} 3} \over {\color{Red} 3} \cdot 4 \cdot 4 \cdot {\color{Blue} 5 \cdot x}} \; = \; {x \over 16} </math>
  
På liknande sätt utvidgar man polynombegreppet till rationella uttryck för att kunna ange t.ex. ett uttryck R(x) som löser ekvationen:
 
  
:::<math>\begin{align} (x^2 - 1)\cdot R(x) & = 6\,x                \\
+
=== Exempel 3 ===
                                            R(x) & = {6\,x \over x^2 - 1} \\
+
        \end{align} </math>
+
  
Det sökta uttrycket R(x) blir då just det rationella uttryck ovan som inte längre är ett polynom. Till skillnad från addition, subtraktion och multiplikation av två (eller flera) polynom som alltid ger ett polynom, ger division av två polynom i regel inget polynom utan ett rationellt uttryck, precis som division av två heltal i regel inte ger ett heltal, utan ett rationellt tal (bråk).
+
Förenkla uttrycket <big><big><math> {\color{White} a} {x \over x+3} \cdot {6\,x+18 \over 6\,x} {\color{White} a} </math></big></big> så långt som möjligt.
  
Övergången från polynom till rationella uttryck är i många avseenden jämförbar med övergången från heltal till rationella tal. Analogin mellan heltal och rationella tal å ena sidan och polynom och rationella uttryck å andra sidan är inte begränsad till det här exemplet utan går mycket längre. Den är både intressant ur teoretiskt perspektiv och nyttig ur praktsik synvinkel. Vi kommer att se att den hjälper oss att räkna med rationella uttryck.
+
:::::::<math> {x \over x+3} \cdot {6\,x+18 \over 6\,x} \; = \; {x \cdot (6\,x+18) \over (x+3) \cdot 6\,x} \; =\; {x \cdot {\color{Red} 6} \cdot {\color{Blue} (x+3)} \over {\color{Blue} (x+3)} \cdot {\color{Red} 6} \cdot x} \; = \; 1 </math>
  
== Att räkna med rationella uttryck ==
+
Varför är det <strong><span style="color:red">fel</span></strong> att göra så här?
  
Avsikten med detta avsnitt är inte att vi ska lära oss räkna med bråktal, för det har vi (förhoppningsvis!) redan gjort i Matte A-kursen. Utan avsikten är att inse att räknereglerna för rationella uttryck är en naturlig fortsättning av de regler som gäller för räkning med bråktal, fast på ett högre plan.
+
:<math> {\rm {\color{Red} {OBS!\;Vanligt\,fel:}}} \quad\; {x \over x+3} \cdot {{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \; = \; {x \over x+3} \cdot 18 \; = \; {x \cdot 18 \over x+3} \; =\; {18\,x \over x+3} </math>
  
Analogin mellan heltal och rationella tal å ena sidan och polynom och rationella uttryck å andra sidan medför bl.a. att räknereglerna för rationella uttryck var en naturlig fortsättning av de regler som gällde för räkning med bråktal. Därför kommer vi nu, när vi går igenom dessa räkneregler, alltid inleda med en repetition av regler som gäller för räkning med bråktal för att sedan generalisera och använda samma principer på räkning med rationella uttryck.
+
Det är fel att förkorta uttrycket <big><math> {\color{White} a} {{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \, {\color{White} a} </math></big> med <math> {\color{White} a} {\color{Red} {6\,x}} {\color{White} a} </math> därför att <math> {\color{White} a} {\color{Red} {6\,x}}+18 {\color{White} a} </math> är en summa. Endast om täljaren och nämnaren är produkter kan gemensamma faktorer förkortas.
  
=== Addition & subtraktion av rationella uttryck ===
+
<strong><span style="color:red">Förklaring</span></strong>:
  
Vi kan nu använda samma principer för att addera och subtrahera rationella uttryck:
+
Låt oss anta <math> x = 1\, </math>. Felaktig förkortning ger <big><big><math> {{\color{Red} 6}+18 \over {\color{Red} 6}} </math></big></big> <math> = 18 </math> medan rätt svar är <big><big><math> {6+18 \over 6} = {24 \over 6} </math></big></big> <math> = 4 \neq 18 </math>.
  
===== Exempel 3 =====
+
Därav följer nödvändigheten att bryta ut <math> {\color{Red} 6} </math> i uttryckets andra faktor, innan man kan förkorta:
  
Förenkla följande uttryck så långt som möjligt: <math> {5 \over 2\,x} \, - \, {4 \over 3\,x} </math>
+
:::::::<math> {6\,x+18 \over 6\,x} \; =\; {{\color{Red} 6} \cdot (x+3) \over {\color{Red} 6} \cdot x} \; =\; {x+3 \over x} </math>
  
<math> {5 \over 2\,x} \, - \, {4 \over 3\,x} \; = \; {\;5 \;\,\cdot {\color{Red} 3\,x} \over 2\,x \cdot {\color{Red} 3\,x}} \, - \, {\;4 \;\,\cdot {\color{Red} 2\,x} \over 3\,x \cdot {\color{Red} 2\,x}} \; = \; {\;15\,x \over 6\,x^2} \, - \, {\;8\,x \over 6\,x^2} \; = \; {\;15\,x - 8\,x \over 6\,x^2} \; = \; {7\,x \over 6\,x^2} \; = \; {7 \over 6\,x} </math>
+
Dvs täljaren som är en summa måste faktoriseras och omvandlas till en produkt innan vi kan förkorta.
  
  
===== Exempel 4 =====
+
=== Exempel 4 ===
  
Förenkla följande uttryck så långt som möjligt: <math> {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} </math>
 
  
<math> {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} \; = \; {\;\;7 \;\;\,\cdot {\color{Red} 2\,x^2} \over 12\,x \cdot {\color{Red} 2\,x^2}} \, - \, {\;\,3 \;\;\,\cdot {\color{Red} 3\,x} \over 8\,x^2 \cdot {\color{Red} 3\,x}} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 \over 24\,x^3} \, - \, {9\,x \over 24\,x^3} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 - 9\,x + 7 \over 24\,x^3} </math>
+
[[Image: Ex Rationell uttryck Div.jpg]]
  
 +
I första steget (likhetstecknet) ovan har den [[1.3_Rationella_uttryck#Repetition:_Kvadreringsreglerna_.26_konjugatregeln|<strong><span style="color:blue">2:a kvadreringsregeln (baklänges)</span></strong>]] använts:
  
===== Exempel 5 =====
+
:::<math> x^2 - 2\,x + 1 = (x-1)^2 </math>
  
Förenkla följande uttryck så långt som möjligt: <math> {2 \over a-b} \, - \, {1 \over b-a} </math>  
+
Detta för att faktorisera 2:a gradspolynomet för att sedan kunna förkorta med <math> (x-1)\, </math>.
  
<math> {2 \over a-b} \, - \, {1 \over b-a} \; = \; {2 \over a-b} \, - \, {1 \over - \, (a-b)} \; = \; {2 \over a-b} \, + \, {1 \over a-b} \; = \; {2 \, + \, 1 \over a-b} \; = \; {3 \over a-b} </math>
 
  
 +
=== Exempel 5 ===
  
===== Exempel 6 =====
+
Förenkla uttrycket <big><big><math> {\color{White} a} \left({x^2 - 8\,x + 16 \over y^3}\right)\, \Big / \,\left({x - 4 \over y^2}\right) \,\, {\color{White} a} </math></big></big> så långt som möjligt:
  
Förenkla följande uttryck så långt som möjligt: <math> {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} </math>
+
:<math> \left({x^2 - 8\,x + 16 \over y^3}\right)\, \Bigg / \,\left({x - 4 \over y^2}\right) \, = \, \left({x^2 - 8\,x + 16 \over y^3}\right)\, \cdot  \,\left({y^2 \over x - 4}\right) \, = \, </math>
  
<math> {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \over (2-x)\cdot x} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \, \over - \, (x-2)\cdot x} \; = \; </math>
+
:<math> \, = \, {(x^2 - 8\,x + 16) \cdot y^2 \over y^3 \cdot (x - 4)} \, = \, \left\{ {\rm 2\!:\!a\;kvadreringsregeln\;(baklänges)\!:} \;\, x^2 - 8\,x + 16 = (x-4)^2 \right\} \, = \, </math>
  
 +
:<math> \, = \, {(x-4)^2 \cdot y^2 \over  y^3 \cdot (x - 4)} \, = \, {(x-4) \cdot {\color{Red} {(x-4)}} \cdot {\color{Red} y} \cdot {\color{Red} y} \over y \cdot {\color{Red} y} \cdot {\color{Red} y} \cdot {\color{Red} {(x - 4)}}} \, = {x-4 \over y} </math>
  
<math> = \; {2 \over (x+2)\cdot(x-2)} \, + \, {-1 \over (x-2)\cdot x} \; = \; {\qquad\quad 2 \qquad\quad\;\cdot {\color{Red} x} \over (x+2)\cdot(x-2) \cdot {\color{Red} x}} \; + \; {{\color{Red} (x+2)}\cdot \quad\, (-1) \quad\, \over {\color{Red} (x+2)}\cdot (x-2)\cdot x} \; = \; </math>
 
  
 +
== Internetlänkar ==
  
<math> = \; {2\,x \; + \; (x+2) \cdot (-1) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x \; + \; (-x-2) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x - x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = </math>
+
http://www03.edu.fi/svenska/laromedel/matematik/nollkurs/pass6.html
  
 +
http://tutorial.math.lamar.edu/Classes/Alg/RationalExpressions.aspx
  
<math> = \; {x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {1 \over x \; (x+2)} </math>
+
http://www.youtube.com/watch?v=FZdt73khrxA&feature=channel
  
 +
http://www.youtube.com/watch?v=hVIol-6vocY&feature=related
  
  

Nuvarande version från 15 oktober 2014 kl. 11.12

       Repetition: Bråkräkning          Teori          Övningar          Fördjupning          Nästa avsnitt -->      

<-- Förra avsnitt


Lektion 5 Rationella uttryck

Lektion 6 Rationella uttryck: Fördjupning


Vad är ett rationellt uttryck?

Ett heltal är ett tal ur mängden \( \left\{ \dots, -3, -2, -1, \,0,\, 1,\, 2,\, 3, \dots \right\} \) dvs alla negativa heltal, noll och alla positiva heltal.

Ett rationellt tal är ett tal i bråkform, dvs kvoten (resultatet av division) mellan två heltal med undantaget \( 0\, \) i nämnaren, t.ex.:

\[ 3 \over 4 \]

Noll får inte förekomma i nämnaren, för division med \( 0\, \), t.ex. \( 3 \over 0 \) är inte definierad, se Fördjupning: Varför är division med 0 inte definierad?.

Ett rationellt uttryck är kvoten mellan två polynom, t.ex.:

\[ 6\,x \over x^2 - 1 \]

Nämnaren \( x^2 - 1\, \) får inte vara \( 0\, \). Detta innebär att \( x\, \) varken får vara \( 1\, \) eller \( -1\, \), för då blir polynomet \( x^2 - 1\, \):s värde \( 0\, \) och därmed inte definierat.

Följaktligen blir även hela uttryckets värde inte definierat. Man säger, det rationella uttrycket ovan är definierat för alla \( x\, \) utom för \( x = 1\, \) och \( x = -1\, \).

Uttryckets definitionsmängd, dvs alla \( x\, \) för vilka uttrycket är definierad, är:

\[ {\rm Alla}\quad x \quad {\rm med} \quad x \neq 1 \quad {\rm och} \quad x \neq -1 \]

Analogin (motsvarigheten) mellan heltal och polynom å ena och rationellt tal och rationellt uttryck å andra sidan kommer att gå som en röd tråd genom hela detta avsnitt, t.ex. när vi räknar med rationella uttryck:


Addition & subtraktion av rationella uttryck

Analogin som nämndes ovan innebär bl.a. att räknereglerna för rationella uttryck är en naturlig fortsättning av de regler som gäller för räkning med bråktal, fast på ett högre plan.

Man kan säga att räknereglerna för rationella uttryck är generaliseringar av bråkräkningens regler. Därför kan samma principer som gäller för bråkräkning, användas för räkning med rationella uttryck. Därför:

Repetera bråkräkning från Matte 1.


Vi ska nu använda bråkräkningens regler för att addera och subtrahera rationella uttryck:


Exempel 1

Förenkla uttrycket \( {\color{White} a} {5 \over 2\,x} \, - \, {4 \over 3\,x} {\color{White} a} \) så långt som möjligt.

\[ {5 \over 2\,x} \, - \, {4 \over 3\,x} \; = \; {\;5 \;\,\cdot {\color{Red} {3\,x}} \over 2\,x \cdot {\color{Red} {3\,x}}} \, - \, {\;4 \;\,\cdot {\color{Red} {2\,x}} \over 3\,x \cdot {\color{Red} {2\,x}}} \; = \; {\;15\,x \over 6\,x^2} \, - \, {\;8\,x \over 6\,x^2} \; = \; {\;15\,x - 8\,x \over 6\,x^2} \; = \; {7\,x \over 6\,x^2} \; = \; {7 \over 6\,x} \]


Exempel 2

Förenkla uttrycket \( {\color{White} a} {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} {\color{White} a} \) så långt som möjligt.

\[ {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} \; = \; {\;\;7 \;\;\,\cdot {\color{Red} {2\,x^2}} \over 12\,x \cdot {\color{Red} {2\,x^2}}} \, - \, {\;\,3 \;\;\,\cdot {\color{Red} {3\,x}} \over 8\,x^2 \cdot {\color{Red} {3\,x}}} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 \over 24\,x^3} \, - \, {9\,x \over 24\,x^3} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 - 9\,x + 7 \over 24\,x^3} \]


Hjälpsats

\( a\,-\,b \; = \; -\,(b\,-\,a) \)

Bevis: \( {\color{White} x} \qquad\qquad a\,-\,b \; = \; -\,b\,+\,a \; = \; -\,(b\,-\,a) \)

Annan formulering: \( {\color{White} x} \, b\,-\,a \; = \; -\,(a\,-\,b) \)


Exempel 3

Förenkla uttrycket \( {\color{White} a} {2 \over a-b} \, - \, {1 \over b-a} {\color{White} a} \) så långt som möjligt.

\[ {2 \over a-b} \, - \, {1 \over b-a} \; = \; {2 \over a-b} \, - \, {1 \over - \, (a-b)} \; = \; {2 \over a-b} \, + \, {1 \over a-b} \; = \; {2 \, + \, 1 \over a-b} \; = \; {3 \over a-b} \]


Repetition: Kvadreringsreglerna & konjugatregeln


\[\begin{align} {\rm 1:a \,\, kvadreringsregeln} \qquad (a+b)^2 & = a^2 + 2\,a\,b + b^2 \\ {\rm 2:a \,\, kvadreringsregeln} \qquad (a-b)^2 & = a^2 - 2\,a\,b + b^2 \\ {\rm \,Konjugatregeln} \qquad (a+b) \cdot (a-b) & = a^2 - b^2 \end{align}\]

I exemplen som följer används dessa regler flitigt.


Exempel 4

Förenkla uttrycket \( {\color{White} a} {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} {\color{White} a} \) så långt som möjligt.

Redan i första steget används konjugatregeln (baklänges) för att faktorisera den första termens nämnare:

\[ {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \over (2-x)\cdot x} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \, \over - \, (x-2)\cdot x} \; = \; \]

\[ = \; {2 \over (x+2)\cdot(x-2)} \, + \, {-1 \over (x-2)\cdot x} \; = \; {\qquad\quad 2 \qquad\quad\;\cdot {\color{Red} x} \over (x+2)\cdot(x-2) \cdot {\color{Red} x}} \; + \; {{\color{Red} {(x+2)}}\cdot \quad\, (-1) \quad\, \over {\color{Red} {(x+2)}}\cdot (x-2)\cdot x} \; = \; \]

\[ = \; {2\,x \; + \; (x+2) \cdot (-1) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x \; + \; (-x-2) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x - x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \]

\[ = \; {x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {1 \over x \; (x+2)} \]


Multiplikation & division av rationella uttryck

Här ska vi använda bråkräkningens regler för att multiplicera och dividera rationella uttryck:


Exempel 1

Förenkla uttrycket \( {\color{White} a} {15 \over x^2} \cdot {x \over 3} \)

\[ {15 \over x^2} \cdot {x \over 3} \; = \; {15 \cdot x \over x^2 \cdot 3} \; =\; {{\color{Red} 3} \cdot 5 \cdot {\color{Blue} x} \over {\color{Blue} x} \cdot x \cdot {\color{Red} 3}} \; = \; {5 \over x} \]


Exempel 2

Förenkla uttrycket \( {\color{White} a} {5\,x^2 \over 12} \cdot {3 \over 20\,x} \)

\[ {5\,x^2 \over 12} \cdot {3 \over 20\,x} \; = \; {5\,x^2 \cdot 3 \over 12 \cdot 20\,x} \; =\; {{\color{Blue} 5 \cdot x} \cdot x \cdot {\color{Red} 3} \over {\color{Red} 3} \cdot 4 \cdot 4 \cdot {\color{Blue} 5 \cdot x}} \; = \; {x \over 16} \]


Exempel 3

Förenkla uttrycket \( {\color{White} a} {x \over x+3} \cdot {6\,x+18 \over 6\,x} {\color{White} a} \) så långt som möjligt.

\[ {x \over x+3} \cdot {6\,x+18 \over 6\,x} \; = \; {x \cdot (6\,x+18) \over (x+3) \cdot 6\,x} \; =\; {x \cdot {\color{Red} 6} \cdot {\color{Blue} (x+3)} \over {\color{Blue} (x+3)} \cdot {\color{Red} 6} \cdot x} \; = \; 1 \]

Varför är det fel att göra så här?

\[ {\rm {\color{Red} {OBS!\;Vanligt\,fel:}}} \quad\; {x \over x+3} \cdot {{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \; = \; {x \over x+3} \cdot 18 \; = \; {x \cdot 18 \over x+3} \; =\; {18\,x \over x+3} \]

Det är fel att förkorta uttrycket \( {\color{White} a} {{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \, {\color{White} a} \) med \( {\color{White} a} {\color{Red} {6\,x}} {\color{White} a} \) därför att \( {\color{White} a} {\color{Red} {6\,x}}+18 {\color{White} a} \) är en summa. Endast om täljaren och nämnaren är produkter kan gemensamma faktorer förkortas.

Förklaring:

Låt oss anta \( x = 1\, \). Felaktig förkortning ger \( {{\color{Red} 6}+18 \over {\color{Red} 6}} \) \( = 18 \) medan rätt svar är \( {6+18 \over 6} = {24 \over 6} \) \( = 4 \neq 18 \).

Därav följer nödvändigheten att bryta ut \( {\color{Red} 6} \) i uttryckets andra faktor, innan man kan förkorta:

\[ {6\,x+18 \over 6\,x} \; =\; {{\color{Red} 6} \cdot (x+3) \over {\color{Red} 6} \cdot x} \; =\; {x+3 \over x} \]

Dvs täljaren som är en summa måste faktoriseras och omvandlas till en produkt innan vi kan förkorta.


Exempel 4

Ex Rationell uttryck Div.jpg

I första steget (likhetstecknet) ovan har den 2:a kvadreringsregeln (baklänges) använts:

\[ x^2 - 2\,x + 1 = (x-1)^2 \]

Detta för att faktorisera 2:a gradspolynomet för att sedan kunna förkorta med \( (x-1)\, \).


Exempel 5

Förenkla uttrycket \( {\color{White} a} \left({x^2 - 8\,x + 16 \over y^3}\right)\, \Big / \,\left({x - 4 \over y^2}\right) \,\, {\color{White} a} \) så långt som möjligt:

\[ \left({x^2 - 8\,x + 16 \over y^3}\right)\, \Bigg / \,\left({x - 4 \over y^2}\right) \, = \, \left({x^2 - 8\,x + 16 \over y^3}\right)\, \cdot \,\left({y^2 \over x - 4}\right) \, = \, \]

\[ \, = \, {(x^2 - 8\,x + 16) \cdot y^2 \over y^3 \cdot (x - 4)} \, = \, \left\{ {\rm 2\!:\!a\;kvadreringsregeln\;(baklänges)\!:} \;\, x^2 - 8\,x + 16 = (x-4)^2 \right\} \, = \, \]

\[ \, = \, {(x-4)^2 \cdot y^2 \over y^3 \cdot (x - 4)} \, = \, {(x-4) \cdot {\color{Red} {(x-4)}} \cdot {\color{Red} y} \cdot {\color{Red} y} \over y \cdot {\color{Red} y} \cdot {\color{Red} y} \cdot {\color{Red} {(x - 4)}}} \, = {x-4 \over y} \]


Internetlänkar

http://www03.edu.fi/svenska/laromedel/matematik/nollkurs/pass6.html

http://tutorial.math.lamar.edu/Classes/Alg/RationalExpressions.aspx

http://www.youtube.com/watch?v=FZdt73khrxA&feature=channel

http://www.youtube.com/watch?v=hVIol-6vocY&feature=related



Copyright © 2011-2014 Taifun Alishenas. All Rights Reserved.