Skillnad mellan versioner av "1.3 Rationella uttryck"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(380 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
 
| style="border-bottom:1px solid #797979" width="5px" |  
 
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[Repetition Bråkräkning från Matte 1|Repetition Bråkräkning]]}}
+
{{Not selected tab|[[1.3 Repetition Bråkräkning från Matte 1|Repetition: Bråkräkning]]}}
 
{{Selected tab|[[1.3 Rationella uttryck|Teori]]}}
 
{{Selected tab|[[1.3 Rationella uttryck|Teori]]}}
 
{{Not selected tab|[[1.3 Övningar till Rationella uttryck|Övningar]]}}
 
{{Not selected tab|[[1.3 Övningar till Rationella uttryck|Övningar]]}}
 
{{Not selected tab|[[1.3 Fördjupning till Rationella uttryck|Fördjupning]]}}
 
{{Not selected tab|[[1.3 Fördjupning till Rationella uttryck|Fördjupning]]}}
{{Not selected tab|[[1.3 Internetlänkar till Rationella uttryck|Internetlänkar]]}}
+
{{Not selected tab|[[1.4 Talet e: Exponentialfunktionen med basen e och den naturliga logaritmen|Nästa avsnitt -->]]}}
 
| style="border-bottom:1px solid #797979"  width="100%"|  
 
| style="border-bottom:1px solid #797979"  width="100%"|  
 
|}
 
|}
 +
[[1.2 Faktorisering av polynom|<span style="color:blue"><-- Förra avsnitt</span>]]
  
  
 +
[[Media: Lektion 5 Rationella uttryck Ruta.pdf|<strong><span style="color:blue">Lektion 5 Rationella uttryck</span></strong>]]
 +
 +
[[Media: Lektion 6 Rationella uttryckFb Ruta.pdf|<strong><span style="color:blue">Lektion 6 Rationella uttryck: Fördjupning</span></strong>]]
 +
 +
__TOC__
  
[[Media: Lektion 8 Rationella uttryck 2.pdf|Lektion 8 Rationella uttryck II]]
 
  
 
== Vad är ett rationellt uttryck? ==
 
== Vad är ett rationellt uttryck? ==
  
Ett <span style="color:red">rationellt tal</span> är kvoten (resultatet av division) mellan två heltal, t.ex.:
+
Ett <strong><span style="color:red">heltal</span></strong> är ett tal ur mängden <math> \left\{ \dots, -3, -2, -1, \,0,\, 1,\, 2,\, 3, \dots \right\} </math> dvs alla negativa heltal, noll och alla positiva heltal.
 +
 
 +
Ett <strong><span style="color:red">rationellt tal</span></strong> är ett [[Repetition_Bråkräkning_från_Matte_1|<strong><span style="color:blue">tal i bråkform</span></strong>]], dvs kvoten (resultatet av division) mellan två heltal med undantaget <math> 0\, </math> i nämnaren, t.ex.:
 +
 
 +
:::::::::<math> 3 \over 4 </math>
 +
 
 +
Noll får inte förekomma i nämnaren, för division med <math> 0\, </math>, t.ex. <big><big><math> 3 \over 0 </math></big></big> är inte definierad, se [[1.3_Fördjupning_till_Rationella_uttryck#Varf.C3.B6r_.C3.A4r_division_med_0_inte_definierad.3F|<strong><span style="color:blue">Fördjupning: Varför är division med 0 inte definierad?</span></strong>]].
  
::::::::::::::::<math>               3 \over 4  </math>
+
Ett <strong><span style="color:red">rationellt uttryck</span></strong> är kvoten mellan två [[1.2 Polynom|<strong><span style="color:blue">polynom</span></strong>]], t.ex.:
  
Med andra ord är rationellt tal en annan beteckning för tal i bråkform. Alla tal vi känner till är rationella tal. Nästan alla heltal kan förekomma i täljaren och nämnaren av ett rationellt tal. Det enda undantaget är 0 i nämnaren, för division med 0 ger inget tal och är därför odefinierad.
+
::::::::<math> 6\,x \over x^2 - 1 </math>
  
Ett <span style="color:red">rationellt uttryck</span> är kvoten mellan två [[1.2 Polynom|polynom]], t.ex.:
+
Nämnaren <math> x^2 - 1\, </math> får inte vara <math> 0\, </math>. Detta innebär att <math> x\, </math> varken får vara <math> 1\, </math> eller <math> -1\, </math>, för då blir polynomet <math> x^2 - 1\, </math>:s värde <math> 0\, </math> och därmed inte definierat.
  
:::::::::::::::<math> 6\,x \over x^2 - 1 </math>
+
Följaktligen blir även hela uttryckets värde inte definierat. Man säger, det rationella uttrycket ovan är definierat för alla <math> x\, </math> utom för <math> x = 1\, </math> och <math> x = -1\, </math>.
  
Att polynomet <math> x^2 - 1 </math> står i nämnaren har vissa konsekvenser. Precis som hos bråk får nämnaren, som i det här fallet är polynomet <math> x^2 - 1 </math>, inte vara 0. I vårt exempel innebär det att x varken får vara 1 eller -1, för då blir nämnaren, dvs polynomet <math> x^2 - 1 </math>:s värde, 0 och därmed odefinierat. Följaktligen blir även hela uttryckets värde odefinierat. Man säger, det rationella uttrycket ovan är definierat för alla x utom för <math> x = 1 </math> och <math> x = -1 </math>.
+
Uttryckets <strong><span style="color:red">definitionsmängd</span></strong>, dvs alla <math> x\, </math> för vilka uttrycket är definierad, är:
  
Man utvidgar talbegreppet från heltal till bråktal för att kunna ange t.ex. ett tal som löser ekvationen:
+
::<math> {\rm Alla}\quad x \quad {\rm med} \quad x \neq 1 \quad {\rm och} \quad x \neq -1 </math>
  
::::::::::::::<math>\begin{align} 4 \cdot x & = 3          \\
+
Analogin (motsvarigheten) mellan heltal och polynom å ena och rationellt tal och rationellt uttryck å andra sidan kommer att gå som en röd tråd genom hela detta avsnitt, t.ex. när vi räknar med rationella uttryck:
                                        x & = {3 \over 4} \\
+
        \end{align} </math>
+
  
Det sökta talet blir då just det rationella tal (bråk) ovan som inte längre är ett heltal.
 
  
På liknande sätt utvidgar man polynombegreppet till rationella uttryck för att kunna ange t.ex. ett uttryck R(x) som löser ekvationen:
+
== Addition & subtraktion av rationella uttryck ==
  
::::::::::<math>\begin{align} (x^2 - 1)\cdot R(x) & = 6\,x                \\
+
Analogin som nämndes ovan innebär bl.a. att räknereglerna för rationella uttryck är en naturlig fortsättning av de regler som gäller för räkning med bråktal, fast på ett högre plan.
                                            R(x) & = {6\,x \over x^2 - 1} \\
+
        \end{align} </math>
+
  
Det sökta uttrycket R(x) blir då just det rationella uttryck ovan som inte längre är ett polynom. Till skillnad från addition, subtraktion och multiplikation av två (eller flera) polynom som alltid ger ett polynom, ger division av två polynom i regel inget polynom utan ett rationellt uttryck, precis som division av två heltal i regel inte ger ett heltal, utan ett rationellt tal (bråk).
+
Man kan säga att räknereglerna för rationella uttryck är generaliseringar av bråkräkningens regler. Därför kan samma principer som gäller för bråkräkning, användas för räkning med rationella uttryck. Därför:
  
Övergången från polynom till rationella uttryck är i många avseenden jämförbar med övergången från heltal till rationella tal. Analogin mellan heltal och rationella tal å ena sidan och polynom och rationella uttryck å andra sidan är inte begränsad till det här exemplet utan går mycket längre. Den är både intressant ur teoretiskt perspektiv och nyttig ur praktsik synvinkel. Vi kommer att se att den hjälper oss att räkna med rationella uttryck.
+
::::::<Big><strong>Repetera [[Repetition_Bråkräkning_från_Matte_1|<span style="color:blue">bråkräkning</span>]] från Matte 1.</strong></Big>
  
== Rationella funktioner ==
 
  
Ett bra sätt att studera rationella uttryck är att inkludera dem i funktioner genom att tilldela dem en annan variabel, t.ex. y:
+
Vi ska nu använda bråkräkningens regler för att addera och subtrahera rationella uttryck:
  
:::::::::::::::<math> y = {6\,x \over x^2 - 1} </math>
 
  
En <span style="color:red">rationell funktion</span> är kvoten mellan två polynom som tilldelas en variabel y. T.ex. ger det rationella uttryck som nämndes i förra avsnitt upphov till den rationella funktionen ovan. Både täljaren och nämnaren är polynom. Av samma skäl som nämndes för uttrycket är denna funktion definierad för alla x utom för <math> x = 1 </math> och <math> x = -1 </math>.
+
=== Exempel 1 ===
  
Fördelen med funktioner är är att man kan visualisera dem med grafer. Vi ska använda detta enkla verktyg för att studera egenskaperna hos rationella uttryck. Innan vi ritar grafen till den rationella funktionen ovan ska vi titta på ett enklare exempel.
+
Förenkla uttrycket <big><big><math> {\color{White} a} {5 \over 2\,x} \, - \, {4 \over 3\,x} {\color{White} a} </math></big></big> så långt som möjligt.  
  
==== Exempel 1 ====
+
:::::::<math> {5 \over 2\,x} \, - \, {4 \over 3\,x} \; = \; {\;5 \;\,\cdot {\color{Red} {3\,x}} \over 2\,x \cdot {\color{Red} {3\,x}}} \, - \, {\;4 \;\,\cdot {\color{Red} {2\,x}} \over 3\,x \cdot {\color{Red} {2\,x}}} \; = \; {\;15\,x \over 6\,x^2} \, - \, {\;8\,x \over 6\,x^2} \; = \; {\;15\,x - 8\,x \over 6\,x^2} \; = \; {7\,x \over 6\,x^2} \; = \; {7 \over 6\,x} </math>
  
Det enklast tänkbara exemplet på ett rationellt uttryck är:
 
  
::::::::::::::::<math> 1 \over x </math>
+
=== Exempel 2 ===
  
Uttrycket är rationellt därför att det är en kvot mellan polynomet 1 (av graden 0) och polynomet x (av graden 1). Uttrycket ger upphov till den rationella funktionen
+
Förenkla uttrycket <big><big><math> {\color{White} a} {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} {\color{White} a} </math></big></big> så långt som möjligt.
  
:::::::::::::::<math> y = {1 \over x} </math>
+
:::::::<math> {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} \; = \; {\;\;7 \;\;\,\cdot {\color{Red} {2\,x^2}} \over 12\,x \cdot {\color{Red} {2\,x^2}}} \, - \, {\;\,3 \;\;\,\cdot {\color{Red} {3\,x}} \over 8\,x^2 \cdot {\color{Red} {3\,x}}} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 \over 24\,x^3} \, - \, {9\,x \over 24\,x^3} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 - 9\,x + 7 \over 24\,x^3} </math>
  
<math> y = 1/x </math> har nämligen en graf vars förlopp markant skiljer sig från polynomfunktioners utseende:
 
  
[[Image: y=1_div_x_70.jpg]]
+
=== Hjälpsats ===
  
Den väsentliga skillnaden mellan denna graf och polynomfunktioners graf är att den här har två skilda grenar, medan en polynomfunktions graf har ett sammanhängande förlopp. Uttryckt i matematiska termer säger man att en polynomfunktion är <span style="color:red">kontinuerlig</span>. Ett polynoms graf kan ritas utan att man lyfter pennan från papperet, medan i grafen ovan måste vid x = 0 pennan lyftas för att gå från grafens ena gren till den andra. Dvs grafen är inte sammanhängande i x = 0. Man säger att funktionen är <span style="color:red">icke-kontinuerlig</span> i x = 0.
+
::::::<big><math> a\,-\,b \; = \; -\,(b\,-\,a) </math></big>
  
Den matematiska anledningen till denna diskontinuitet är att funktionen <math> y = 1/x </math> inte har något värde för x = 0. Division med 0 ger inget tal och är därmed odefinierad. När x närmar sig 0 går y mot oändligheten, vilket tydligt framgår av grafen. Man säger: Funktionen <math> y = {1/x} </math> är <span style="color:red">inte definierad för x = 0</span>. Man måste undanta x = 0 från funktionens definitionsmängd: <math> y = {1/x} </math> är definierad för alla x utom för x = 0.
+
Bevis: <big><math> {\color{White} x} \qquad\qquad a\,-\,b \; = \; -\,b\,+\,a \; = \; -\,(b\,-\,a) </math></big>
  
Icke-definierbarheten och diskontinuiteten <u>för vissa x</u> är något typiskt för alla rationella funktioner och det är det som skiljer dem från polynomfunktioner som är definierade och kontinuerliga för alla x.
+
Annan formulering: <big><math> {\color{White} x} \, b\,-\,a \; = \; -\,(a\,-\,b) </math></big>
  
==== Exempel 2 ====
 
  
Genom att understryka orden <u>för vissa x</u> i exemplet 1 ovan vill vi säga att det är bara några isolerade x-värden för vilka en rationell funktion <u>kan</u> vara odefinierad. Antalet sådana x-värden kan hos rationella funktioner vara 0, 1, 2, <math>\ldots</math>. Antalet 0 innebär att det även finns rationella funktioner som inte har några x för vilka de är odefinierade, dvs de är definierade och kontinuerliga för alla x precis som vanliga polynom. Ett exempel på sådana "snälla" rationella funktioner är:
+
=== Exempel 3 ===
  
:::::::::::::::<math> y_1 = {6\,x \over x^2 + 1} </math>
+
Förenkla uttrycket <big><big><math> {\color{White} a} {2 \over a-b} \, - \, {1 \over b-a} {\color{White} a} </math></big></big> så långt som möjligt.
  
Anledningen till att <math>y_1\,</math> är definierad för alla x är att funktionsuttryckets nämnare, dvs polynomet <math> x^2 + 1 </math> inte har några (reella) nollställen. Det i sin tur beror på att ekvationen <br> <math> x^2 + 1 = 0 </math> saknar lösning, därför att <math> x^2 </math> blir -1 och roten ur -1 inte kan dras. Grafen till funktionen <math>y_1\,</math> (övre kurvan) visar att <math>y_1\,</math> är definierad och kontinuerlig för alla x:
+
:::::::<math> {2 \over a-b} \, - \, {1 \over b-a} \; = \; {2 \over a-b} \, - \, {1 \over - \, (a-b)} \; = \; {2 \over a-b} \, + \, {1 \over a-b} \; = \; {2 \, + \, 1 \over a-b} \; = \; {3 \over a-b} </math>
  
[[Image: 14Rat_fkt_utan_med_disk.jpg]]
 
  
I den undre delen av bilden ovan har vi, för att kunna jämföra, även ritat grafen till en annan rationell funktion <math>y_2\,</math> som skiljer sig från <math>y_1\,</math> endast i ett förtecken i nämnaren:
+
=== <span style="color:blue">Repetition: Kvadreringsreglerna & konjugatregeln</span> ===
 +
----
 +
 +
::<math>\begin{align} {\rm 1:a \,\, kvadreringsregeln} \qquad          (a+b)^2 & = a^2 + 2\,a\,b + b^2  \\
 +
                      {\rm 2:a \,\, kvadreringsregeln} \qquad          (a-b)^2 & = a^2 - 2\,a\,b + b^2  \\
 +
                      {\rm \,Konjugatregeln}          \qquad (a+b) \cdot (a-b) & = a^2 - b^2
 +
  \end{align}</math>
  
:::::::::::::::<math> y_2 = {6\,x \over x^2 - 1} </math>
+
----
 +
I exemplen som följer används dessa regler flitigt.
  
Skillnaden i ett förtecken i nämnaren räcker för att att resultera i ett helt annorlunda beteende av funktionen <math>y_2\,</math> jämfört med <math>y_1\,</math>. Som grafen visar är <math>y_2\,</math>:s kurva uppdelad i tre grenar och har två ställen där den inte är sammanhängande (inte kontinuerlig). En blick på funktionsuttrycket avslöjar detta. Här kan vi dra nytta av faktorisering som vi lärt oss i förra avsnitt. Skriver man nämnarens polynom i faktorform ser man att att <math>y_2\,</math> varken är definierad för <math> x_1 = -1 </math> eller för <math> x_2 = 1 </math>:
 
  
:::::::::::::::<math> y_2 = {6\,x \over x^2 - 1} = {6\,x \over (x + 1) \cdot (x - 1)} </math>
+
=== Exempel 4 ===
  
När x närmar sig -1 eller 1 går <math>y_2</math> mot oändligheten, vilket även framgår av grafen. Exemplet visar att det som är väsentligt för rationella funktioner och därmed för rationella uttryck, är om polynomet i nämnaren har några nollställen och, om det är fallet, vilka de är. Med andra ord, om polynomet i nämnaren låter sig faktorisera eller ej. Om ja, kan vi genom faktorisering få fram nollställena. I vårt exempel kan man i <math> y_1 </math> inte faktorisera <math> x^2 + 1 </math>, för ekvationen <math> x^2 + 1 = 0 </math> saknar lösning. Däremot går det i <math> y_2 </math> att faktorisera <math> (x^2 - 1) = (x + 1) </math><math>\cdot</math><math>(x - 1)</math>, för ekvationen <math> x^2 - 1 = 0 </math> har lösningarna <math> x_1 = -1 </math> eller för <math> x_2 = 1 </math>.
+
Förenkla uttrycket <big><big><math> {\color{White} a} {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} {\color{White} a} </math></big></big> så långt som möjligt.  
  
== Att räkna med rationella uttryck ==
+
Redan i första steget används [[1.3_Rationella_uttryck#Repetition:_Kvadreringsreglerna_.26_konjugatregeln|<strong><span style="color:blue">konjugatregeln (baklänges)</span></strong>]] för att faktorisera den första termens nämnare:
  
Avsikten med detta avsnitt är inte att vi ska lära oss räkna med bråktal, för det har vi (förhoppningsvis!) redan gjort i Matte A-kursen. Utan avsikten är att inse att räknereglerna för rationella uttryck är en naturlig fortsättning av de regler som gäller för räkning med bråktal, fast på ett högre plan.
+
:<math> {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \over (2-x)\cdot x} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \, \over - \, (x-2)\cdot x} \; = \; </math>
  
Analogin mellan heltal och rationella tal å ena sidan och polynom och rationella uttryck å andra sidan medför bl.a. att räknereglerna för rationella uttryck var en naturlig fortsättning av de regler som gällde för räkning med bråktal. Därför kommer vi nu, när vi går igenom dessa räkneregler, alltid inleda med en repetition av regler som gäller för räkning med bråktal för att sedan generalisera och använda samma principer på räkning med rationella uttryck.
+
:<math> = \; {2 \over (x+2)\cdot(x-2)} \, + \, {-1 \over (x-2)\cdot x} \; = \; {\qquad\quad 2 \qquad\quad\;\cdot {\color{Red} x} \over (x+2)\cdot(x-2) \cdot {\color{Red} x}} \; + \; {{\color{Red} {(x+2)}}\cdot \quad\, (-1) \quad\, \over {\color{Red} {(x+2)}}\cdot (x-2)\cdot x} \; = \; </math>
  
=== Addition & subtraktion av bråktal ===
+
:<math> = \; {2\,x \; + \; (x+2) \cdot (-1) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x \; + \; (-x-2) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x - x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = </math>
  
Vi tittar först på addition & subtraktion av bråktal:  
+
:<math> = \; {x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {1 \over x \; (x+2)} </math>
  
[[Image: 14b_Add_Sub_Bråk.jpg]]
 
  
 +
== Multiplikation & division av rationella uttryck ==
  
=== Addition & subtraktion av rationella uttryck ===
+
Här ska vi använda bråkräkningens regler för att multiplicera och dividera rationella uttryck:
  
Vi kan nu använda samma principer för att addera och subtrahera rationella uttryck:
 
  
===== Exempel 3 =====
+
=== Exempel 1 ===
  
Förenkla följande uttryck så långt som möjligt: <math> {5 \over 2\,x} \, - \, {4 \over 3\,x} </math>
+
Förenkla uttrycket <big><big><math> {\color{White} a} {15 \over x^2} \cdot {x \over 3} </math></big></big>
  
<math> {5 \over 2\,x} \, - \, {4 \over 3\,x} \; = \; {\;5 \;\,\cdot {\color{Red} 3\,x} \over 2\,x \cdot {\color{Red} 3\,x}} \, - \, {\;4 \;\,\cdot {\color{Red} 2\,x} \over 3\,x \cdot {\color{Red} 2\,x}} \; = \; {\;15\,x \over 6\,x^2} \, - \, {\;8\,x \over 6\,x^2} \; = \; {\;15\,x - 8\,x \over 6\,x^2} \; = \; {7\,x \over 6\,x^2} \; = \; {7 \over 6\,x} </math>
+
:::::::<math> {15 \over x^2} \cdot {x \over 3} \; = \; {15 \cdot x \over x^2 \cdot 3} \; =\; {{\color{Red} 3} \cdot 5 \cdot {\color{Blue} x} \over {\color{Blue} x} \cdot x \cdot {\color{Red} 3}} \; = \; {5 \over x} </math>
  
  
===== Exempel 4 =====
+
=== Exempel 2 ===
  
Förenkla följande uttryck så långt som möjligt: <math> {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} </math>  
+
Förenkla uttrycket <big><big><math> {\color{White} a} {5\,x^2 \over 12} \cdot {3 \over 20\,x} </math></big></big>
  
<math> {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} \; = \; {\;\;7 \;\;\,\cdot {\color{Red} 2\,x^2} \over 12\,x \cdot {\color{Red} 2\,x^2}} \, - \, {\;\,3 \;\;\,\cdot {\color{Red} 3\,x} \over 8\,x^2 \cdot {\color{Red} 3\,x}} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 \over 24\,x^3} \, - \, {9\,x \over 24\,x^3} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 - 9\,x + 7 \over 24\,x^3} </math>
+
:::::::<math> {5\,x^2 \over 12} \cdot {3 \over 20\,x} \; = \; {5\,x^2 \cdot 3 \over 12 \cdot 20\,x} \; =\; {{\color{Blue} 5 \cdot x} \cdot x \cdot {\color{Red} 3} \over {\color{Red} 3} \cdot 4 \cdot 4 \cdot {\color{Blue} 5 \cdot x}} \; = \; {x \over 16} </math>
  
  
===== Exempel 5 =====
+
=== Exempel 3 ===
  
Förenkla följande uttryck så långt som möjligt: <math> {2 \over a-b} \, - \, {1 \over b-a} </math>  
+
Förenkla uttrycket <big><big><math> {\color{White} a} {x \over x+3} \cdot {6\,x+18 \over 6\,x} {\color{White} a} </math></big></big> så långt som möjligt.
  
<math> {2 \over a-b} \, - \, {1 \over b-a} \; = \; {2 \over a-b} \, - \, {1 \over - \, (a-b)} \; = \; {2 \over a-b} \, + \, {1 \over a-b} \; = \; {2 \, + \, 1 \over a-b} \; = \; {3 \over a-b} </math>
+
:::::::<math> {x \over x+3} \cdot {6\,x+18 \over 6\,x} \; = \; {x \cdot (6\,x+18) \over (x+3) \cdot 6\,x} \; =\; {x \cdot {\color{Red} 6} \cdot {\color{Blue} (x+3)} \over {\color{Blue} (x+3)} \cdot {\color{Red} 6} \cdot x} \; = \; 1 </math>
  
 +
Varför är det <strong><span style="color:red">fel</span></strong> att göra så här?
  
===== Exempel 6 =====
+
:<math> {\rm {\color{Red} {OBS!\;Vanligt\,fel:}}} \quad\; {x \over x+3} \cdot {{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \; = \; {x \over x+3} \cdot 18 \; = \; {x \cdot 18 \over x+3} \; =\; {18\,x \over x+3} </math>
  
Förenkla följande uttryck så långt som möjligt: <math> {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} </math>
+
Det är fel att förkorta uttrycket <big><math> {\color{White} a} {{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \, {\color{White} a} </math></big> med <math> {\color{White} a} {\color{Red} {6\,x}} {\color{White} a} </math> därför att <math> {\color{White} a} {\color{Red} {6\,x}}+18 {\color{White} a} </math> är en summa. Endast om täljaren och nämnaren är produkter kan gemensamma faktorer förkortas.
  
<math> {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \over (2-x)\cdot x} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \, \over - \, (x-2)\cdot x} \; = \; </math>
+
<strong><span style="color:red">Förklaring</span></strong>:
  
 +
Låt oss anta <math> x = 1\, </math>. Felaktig förkortning ger <big><big><math> {{\color{Red} 6}+18 \over {\color{Red} 6}} </math></big></big> <math> = 18 </math> medan rätt svar är <big><big><math> {6+18 \over 6} = {24 \over 6} </math></big></big> <math> = 4 \neq 18 </math>.
  
<math> = \; {2 \over (x+2)\cdot(x-2)} \, + \, {-1 \over (x-2)\cdot x} \; = \; {\qquad\quad 2 \qquad\quad\;\cdot {\color{Red} x} \over (x+2)\cdot(x-2) \cdot {\color{Red} x}} \; + \; {{\color{Red} (x+2)}\cdot \quad\, (-1) \quad\, \over {\color{Red} (x+2)}\cdot (x-2)\cdot x} \; = \; </math>
+
Därav följer nödvändigheten att bryta ut <math> {\color{Red} 6} </math> i uttryckets andra faktor, innan man kan förkorta:
  
 +
:::::::<math> {6\,x+18 \over 6\,x} \; =\; {{\color{Red} 6} \cdot (x+3) \over {\color{Red} 6} \cdot x} \; =\; {x+3 \over x} </math>
  
<math> = \; {2\,x \; + \; (x+2) \cdot (-1) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x \; + \; (-x-2) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x - x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = </math>
+
Dvs täljaren som är en summa måste faktoriseras och omvandlas till en produkt innan vi kan förkorta.
  
  
<math> = \; {x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {1 \over x \; (x+2)} </math>
+
=== Exempel 4 ===
  
  
=== Multiplikation & division ===
+
[[Image: Ex Rationell uttryck Div.jpg]]
  
Även här ska vi först påminna om multiplikation och division av bråktal för att sedan gå över till rationella uttryck:
+
I första steget (likhetstecknet) ovan har den [[1.3_Rationella_uttryck#Repetition:_Kvadreringsreglerna_.26_konjugatregeln|<strong><span style="color:blue">2:a kvadreringsregeln (baklänges)</span></strong>]] använts:
  
[[Image: 14e_Mult_Div_Bråk.jpg]]
+
:::<math> x^2 - 2\,x + 1 = (x-1)^2 </math>
  
[[Image: 14e_Mult_Div_Bråk_Uttryck.jpg]]
+
Detta för att faktorisera 2:a gradspolynomet för att sedan kunna förkorta med <math> (x-1)\, </math>.
  
== Hävbara och icke-hävbara diskontinuiteter ==
 
  
Vi har hittills använt bråktalens räkneregler för att räkna med rationella uttryck utan att stöta på några hinder. Men vi får inte glömma att rationella uttryck ändå är komplexare objekt. Därför är det inte förvånansvärt att de har egenskaper som inte längre kan jämföras med motsvarigheter hos bråktal. En av dessa visas upp när man förkortar dem efter faktorisering av täljaren och nämnaren.
+
=== Exempel 5 ===
  
[[Image: 14f_Förkort_Diskont.jpg]]
+
Förenkla uttrycket <big><big><math> {\color{White} a} \left({x^2 - 8\,x + 16 \over y^3}\right)\, \Big / \,\left({x - 4 \over y^2}\right) \,\, {\color{White} a} </math></big></big> så långt som möjligt:  
  
Efter faktorisering av täljaren och nämnaren samt förkortning med faktorn <math> (x+3)\, </math> förenklas det rationella uttrycket väsentligt. Men denna förkortning är endast korrekt om <math> x \not= -3 </math> eftersom förkortning med <math> (x+3)\,</math> innebär division med 0 om <math> x = -3\, </math>. Likhetstecknet mellan de rationella uttrycken gäller endast under förutsättningen <math> x \not= -3 </math>. Det enklare uttrycket är identiskt med det ursprungliga inte för alla x utan för alla utom för <math> x = -3\, </math>. Det blir ännu tydligare när vi betraktar dem som rationella funktioner. Då uppsår nämligen frågan: Vad händer med diskontinuiteten i <math> x = -3 </math> som försvinner efter att vi förkortat uttrycket med faktorn <math> (x+3) </math>? Och vad är det för skillnad mellan diskontinuiteterna i <math> x = -3 </math> och <math> x = 3 </math>? För att undersöka dessa frågor skriver vi dem som funktioner och ritar båda funktioners grafer:
+
:<math> \left({x^2 - 8\,x + 16 \over y^3}\right)\, \Bigg / \,\left({x - 4 \over y^2}\right) \, = \, \left({x^2 - 8\,x + 16 \over y^3}\right)\, \cdot  \,\left({y^2 \over x - 4}\right) \, = \, </math>
  
::<math>\begin{align} y_3 & = {2\,x^2 + 6\,x \over x^2 - 9} = {2\,x\,(x + 3) \over (x + 3)\,(x - 3)} \\
+
:<math> \, = \, {(x^2 - 8\,x + 16) \cdot y^2 \over y^3 \cdot (x - 4)} \, = \, \left\{ {\rm 2\!:\!a\;kvadreringsregeln\;(baklänges)\!:} \;\, x^2 - 8\,x + 16 = (x-4)^2 \right\} \, = \, </math>
                                                                                                    \\
+
                y_4 & = {2\,x \over x - 3}\end{align} </math> [[Image: Vit_5,64cm.jpg]] [[Image: 14ay_Förkort_Förläng_2_1_disk.jpg]]
+
  
I den vänstra delen av bilden ser man grafen till funktionen <math> y_3\,</math> och i den högra delen grafen till funktionen <math> y_4\,</math>. Till synes visar resultatet helt identiska kurvor. Men i själva verket vet vi att funktionen <math> y_3 </math> inte är definierad för <math> x = -3 </math> och har en diskontinuitet där. Därför har dess graf (kurvan till vänster) ett "hål" eller en "lucka" i <math> x = -3 </math> som man inte ser. Så grafen lurar oss. Vi måste hålla oss till <math> y_3 </math>:s funktionsuttryck ovan som klart visar <u>två</u> diskontinuiteter, en i <math> x = -3 </math> och den andra i <math> x = 3 </math>. Den första som vi lyckades få bort genom förkortning, är en s.k. <span style="color:red">hävbar diskontinuitet</span> medan den andra är icke-hävbar. Utan att gå närmare in på detta (överkurs) kan vi bara säga att hävbara diskontinuiteter är sådana som är "snälla" och kan repareras. I det här fallet skulle man kunna t.ex. komplettera funktionen <math> y_3 </math>:s definition med att <math> y_3 </math> ska vara 1 för <math> x = -3 </math>. Man kan nämligen visa att <math> y_3 </math> går mot ett ändligt värde när x går mot -3 båda från vänster och höger. Vi behöver inte genomföra beviset utan kan nöja oss med att förkorta uttrycket med faktorn <math> (x+3) </math>. Att det ändliga värdet, det s.k. gränsvärdet, blir 1 kan vi få fram genom att beräkna värdet av <math> y_4 </math> för <math> x = -3 </math>:
+
:<math> \, = \, {(x-4)^2 \cdot y^2 \over  y^3 \cdot (x - 4)} \, = \, {(x-4) \cdot {\color{Red} {(x-4)}} \cdot {\color{Red} y} \cdot {\color{Red} y} \over y \cdot {\color{Red} y} \cdot {\color{Red} y} \cdot {\color{Red} {(x - 4)}}} \, = {x-4 \over y} </math>
  
:::::::::::::::<math> y_4 (-3) = {2 \cdot (-3) \over -3 - 3} = {-6 \over -6} = 1 </math>
 
  
Då är det möjligt att definiera en ny funktion <math> \tilde{y}_3 </math> som är lite modifierad gentemot <math> y_3\, </math>. Modifikationen består i att lägga till värdet 1 i den nya funktionen för <math> x = -3 </math> så att den blir både definierad och kontinuerlig för <math> x = -3 </math>. Annars är den identisk med <math> y_3\, </math>. Så här brukar man definiera den nya funktion <math> \tilde{y}_3 </math>:
+
== Internetlänkar ==
  
 +
http://www03.edu.fi/svenska/laromedel/matematik/nollkurs/pass6.html
  
:::::::::::::::<math>\tilde{y}_3 = \begin{cases} \displaystyle {2\,x^2 + 6\,x \over x^2 - 9} &, \text{om}\; x \neq -3 \\
+
http://tutorial.math.lamar.edu/Classes/Alg/RationalExpressions.aspx
                                                                                                                      \\
+
                                                \quad 1                        &, \text{om}\; x  =  -3
+
                                  \end{cases}</math>
+
  
 +
http://www.youtube.com/watch?v=FZdt73khrxA&feature=channel
  
Denna definition är uppdelad i två olika fall: För alla x utom <math> x = -3 </math> definieras funktionen <math> \tilde{y}_3 </math> enligt det rationella uttrycket för <math> y_3\, </math>, medan för <math> x = -3 </math> har den värdet 1. <math> \tilde{y}_3 </math> kallas den <span style="color:red">kontinuerliga fortsättningen</span> av <math> y_3 </math>. Den är lämpligare att användas istället för <math> y_3 </math> eftersom man hat lyckats att eliminera åtminstone den hävbara diskontinuiteten.
+
http://www.youtube.com/watch?v=hVIol-6vocY&feature=related
  
Den andra faktorn <math> (x-3) </math> i <math> y_3 </math>:s nämnare som inte kan förkortas ger upphov till den andra diskontinuiteten av <math> y_3 </math> i <math> x = 3 </math>. Denna diskontinuitet är dock inte hävbar. I <math> x = 3 </math> går <math> y_3 </math> inte mot ett ändligt värde utan mot oändligheten när x går mot 3. Därför är diskontinuiteten i <math> x = 3 </math> kvar och synlig i graferna av både <math> y_3 </math> och <math> y_4 </math>. Den är, till skillnad från den första, en <span style="color:red">icke-hävbar diskontinuitet</span> och kan inte repareras på något sätt. Denna "allvarliga" diskontinuitet finns även kvar i den kontinuerliga fortsättningen <math> \tilde{y}_3 </math> och är icke-hävbar även där.
 
  
  
  
 
[[Matte:Copyrights|Copyright]] © 2011-2014 Taifun Alishenas. All Rights Reserved.
 
[[Matte:Copyrights|Copyright]] © 2011-2014 Taifun Alishenas. All Rights Reserved.

Nuvarande version från 15 oktober 2014 kl. 11.12

       Repetition: Bråkräkning          Teori          Övningar          Fördjupning          Nästa avsnitt -->      

<-- Förra avsnitt


Lektion 5 Rationella uttryck

Lektion 6 Rationella uttryck: Fördjupning


Vad är ett rationellt uttryck?

Ett heltal är ett tal ur mängden \( \left\{ \dots, -3, -2, -1, \,0,\, 1,\, 2,\, 3, \dots \right\} \) dvs alla negativa heltal, noll och alla positiva heltal.

Ett rationellt tal är ett tal i bråkform, dvs kvoten (resultatet av division) mellan två heltal med undantaget \( 0\, \) i nämnaren, t.ex.:

\[ 3 \over 4 \]

Noll får inte förekomma i nämnaren, för division med \( 0\, \), t.ex. \( 3 \over 0 \) är inte definierad, se Fördjupning: Varför är division med 0 inte definierad?.

Ett rationellt uttryck är kvoten mellan två polynom, t.ex.:

\[ 6\,x \over x^2 - 1 \]

Nämnaren \( x^2 - 1\, \) får inte vara \( 0\, \). Detta innebär att \( x\, \) varken får vara \( 1\, \) eller \( -1\, \), för då blir polynomet \( x^2 - 1\, \):s värde \( 0\, \) och därmed inte definierat.

Följaktligen blir även hela uttryckets värde inte definierat. Man säger, det rationella uttrycket ovan är definierat för alla \( x\, \) utom för \( x = 1\, \) och \( x = -1\, \).

Uttryckets definitionsmängd, dvs alla \( x\, \) för vilka uttrycket är definierad, är:

\[ {\rm Alla}\quad x \quad {\rm med} \quad x \neq 1 \quad {\rm och} \quad x \neq -1 \]

Analogin (motsvarigheten) mellan heltal och polynom å ena och rationellt tal och rationellt uttryck å andra sidan kommer att gå som en röd tråd genom hela detta avsnitt, t.ex. när vi räknar med rationella uttryck:


Addition & subtraktion av rationella uttryck

Analogin som nämndes ovan innebär bl.a. att räknereglerna för rationella uttryck är en naturlig fortsättning av de regler som gäller för räkning med bråktal, fast på ett högre plan.

Man kan säga att räknereglerna för rationella uttryck är generaliseringar av bråkräkningens regler. Därför kan samma principer som gäller för bråkräkning, användas för räkning med rationella uttryck. Därför:

Repetera bråkräkning från Matte 1.


Vi ska nu använda bråkräkningens regler för att addera och subtrahera rationella uttryck:


Exempel 1

Förenkla uttrycket \( {\color{White} a} {5 \over 2\,x} \, - \, {4 \over 3\,x} {\color{White} a} \) så långt som möjligt.

\[ {5 \over 2\,x} \, - \, {4 \over 3\,x} \; = \; {\;5 \;\,\cdot {\color{Red} {3\,x}} \over 2\,x \cdot {\color{Red} {3\,x}}} \, - \, {\;4 \;\,\cdot {\color{Red} {2\,x}} \over 3\,x \cdot {\color{Red} {2\,x}}} \; = \; {\;15\,x \over 6\,x^2} \, - \, {\;8\,x \over 6\,x^2} \; = \; {\;15\,x - 8\,x \over 6\,x^2} \; = \; {7\,x \over 6\,x^2} \; = \; {7 \over 6\,x} \]


Exempel 2

Förenkla uttrycket \( {\color{White} a} {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} {\color{White} a} \) så långt som möjligt.

\[ {7 \over 12\,x} \, - \, {3 \over 8\,x^2} \, + \, {7 \over 24\,x^3} \; = \; {\;\;7 \;\;\,\cdot {\color{Red} {2\,x^2}} \over 12\,x \cdot {\color{Red} {2\,x^2}}} \, - \, {\;\,3 \;\;\,\cdot {\color{Red} {3\,x}} \over 8\,x^2 \cdot {\color{Red} {3\,x}}} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 \over 24\,x^3} \, - \, {9\,x \over 24\,x^3} \, + \, {7 \over 24\,x^3} \; = \; {14\,x^2 - 9\,x + 7 \over 24\,x^3} \]


Hjälpsats

\( a\,-\,b \; = \; -\,(b\,-\,a) \)

Bevis: \( {\color{White} x} \qquad\qquad a\,-\,b \; = \; -\,b\,+\,a \; = \; -\,(b\,-\,a) \)

Annan formulering: \( {\color{White} x} \, b\,-\,a \; = \; -\,(a\,-\,b) \)


Exempel 3

Förenkla uttrycket \( {\color{White} a} {2 \over a-b} \, - \, {1 \over b-a} {\color{White} a} \) så långt som möjligt.

\[ {2 \over a-b} \, - \, {1 \over b-a} \; = \; {2 \over a-b} \, - \, {1 \over - \, (a-b)} \; = \; {2 \over a-b} \, + \, {1 \over a-b} \; = \; {2 \, + \, 1 \over a-b} \; = \; {3 \over a-b} \]


Repetition: Kvadreringsreglerna & konjugatregeln


\[\begin{align} {\rm 1:a \,\, kvadreringsregeln} \qquad (a+b)^2 & = a^2 + 2\,a\,b + b^2 \\ {\rm 2:a \,\, kvadreringsregeln} \qquad (a-b)^2 & = a^2 - 2\,a\,b + b^2 \\ {\rm \,Konjugatregeln} \qquad (a+b) \cdot (a-b) & = a^2 - b^2 \end{align}\]

I exemplen som följer används dessa regler flitigt.


Exempel 4

Förenkla uttrycket \( {\color{White} a} {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} {\color{White} a} \) så långt som möjligt.

Redan i första steget används konjugatregeln (baklänges) för att faktorisera den första termens nämnare:

\[ {2 \over x^2-4} \, + \, {1 \over 2\,x - x^2} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \over (2-x)\cdot x} \; = \; {2 \over (x+2)\cdot(x-2)} \, + \, {1 \, \over - \, (x-2)\cdot x} \; = \; \]

\[ = \; {2 \over (x+2)\cdot(x-2)} \, + \, {-1 \over (x-2)\cdot x} \; = \; {\qquad\quad 2 \qquad\quad\;\cdot {\color{Red} x} \over (x+2)\cdot(x-2) \cdot {\color{Red} x}} \; + \; {{\color{Red} {(x+2)}}\cdot \quad\, (-1) \quad\, \over {\color{Red} {(x+2)}}\cdot (x-2)\cdot x} \; = \; \]

\[ = \; {2\,x \; + \; (x+2) \cdot (-1) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x \; + \; (-x-2) \over (x+2) \cdot (x-2)\cdot x} \; = \; {2\,x - x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \]

\[ = \; {x - 2 \over (x+2) \cdot (x-2)\cdot x} \; = \; {1 \over x \; (x+2)} \]


Multiplikation & division av rationella uttryck

Här ska vi använda bråkräkningens regler för att multiplicera och dividera rationella uttryck:


Exempel 1

Förenkla uttrycket \( {\color{White} a} {15 \over x^2} \cdot {x \over 3} \)

\[ {15 \over x^2} \cdot {x \over 3} \; = \; {15 \cdot x \over x^2 \cdot 3} \; =\; {{\color{Red} 3} \cdot 5 \cdot {\color{Blue} x} \over {\color{Blue} x} \cdot x \cdot {\color{Red} 3}} \; = \; {5 \over x} \]


Exempel 2

Förenkla uttrycket \( {\color{White} a} {5\,x^2 \over 12} \cdot {3 \over 20\,x} \)

\[ {5\,x^2 \over 12} \cdot {3 \over 20\,x} \; = \; {5\,x^2 \cdot 3 \over 12 \cdot 20\,x} \; =\; {{\color{Blue} 5 \cdot x} \cdot x \cdot {\color{Red} 3} \over {\color{Red} 3} \cdot 4 \cdot 4 \cdot {\color{Blue} 5 \cdot x}} \; = \; {x \over 16} \]


Exempel 3

Förenkla uttrycket \( {\color{White} a} {x \over x+3} \cdot {6\,x+18 \over 6\,x} {\color{White} a} \) så långt som möjligt.

\[ {x \over x+3} \cdot {6\,x+18 \over 6\,x} \; = \; {x \cdot (6\,x+18) \over (x+3) \cdot 6\,x} \; =\; {x \cdot {\color{Red} 6} \cdot {\color{Blue} (x+3)} \over {\color{Blue} (x+3)} \cdot {\color{Red} 6} \cdot x} \; = \; 1 \]

Varför är det fel att göra så här?

\[ {\rm {\color{Red} {OBS!\;Vanligt\,fel:}}} \quad\; {x \over x+3} \cdot {{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \; = \; {x \over x+3} \cdot 18 \; = \; {x \cdot 18 \over x+3} \; =\; {18\,x \over x+3} \]

Det är fel att förkorta uttrycket \( {\color{White} a} {{\color{Red} {6\,x}}+18 \over {\color{Red} {6\,x}}} \, {\color{White} a} \) med \( {\color{White} a} {\color{Red} {6\,x}} {\color{White} a} \) därför att \( {\color{White} a} {\color{Red} {6\,x}}+18 {\color{White} a} \) är en summa. Endast om täljaren och nämnaren är produkter kan gemensamma faktorer förkortas.

Förklaring:

Låt oss anta \( x = 1\, \). Felaktig förkortning ger \( {{\color{Red} 6}+18 \over {\color{Red} 6}} \) \( = 18 \) medan rätt svar är \( {6+18 \over 6} = {24 \over 6} \) \( = 4 \neq 18 \).

Därav följer nödvändigheten att bryta ut \( {\color{Red} 6} \) i uttryckets andra faktor, innan man kan förkorta:

\[ {6\,x+18 \over 6\,x} \; =\; {{\color{Red} 6} \cdot (x+3) \over {\color{Red} 6} \cdot x} \; =\; {x+3 \over x} \]

Dvs täljaren som är en summa måste faktoriseras och omvandlas till en produkt innan vi kan förkorta.


Exempel 4

Ex Rationell uttryck Div.jpg

I första steget (likhetstecknet) ovan har den 2:a kvadreringsregeln (baklänges) använts:

\[ x^2 - 2\,x + 1 = (x-1)^2 \]

Detta för att faktorisera 2:a gradspolynomet för att sedan kunna förkorta med \( (x-1)\, \).


Exempel 5

Förenkla uttrycket \( {\color{White} a} \left({x^2 - 8\,x + 16 \over y^3}\right)\, \Big / \,\left({x - 4 \over y^2}\right) \,\, {\color{White} a} \) så långt som möjligt:

\[ \left({x^2 - 8\,x + 16 \over y^3}\right)\, \Bigg / \,\left({x - 4 \over y^2}\right) \, = \, \left({x^2 - 8\,x + 16 \over y^3}\right)\, \cdot \,\left({y^2 \over x - 4}\right) \, = \, \]

\[ \, = \, {(x^2 - 8\,x + 16) \cdot y^2 \over y^3 \cdot (x - 4)} \, = \, \left\{ {\rm 2\!:\!a\;kvadreringsregeln\;(baklänges)\!:} \;\, x^2 - 8\,x + 16 = (x-4)^2 \right\} \, = \, \]

\[ \, = \, {(x-4)^2 \cdot y^2 \over y^3 \cdot (x - 4)} \, = \, {(x-4) \cdot {\color{Red} {(x-4)}} \cdot {\color{Red} y} \cdot {\color{Red} y} \over y \cdot {\color{Red} y} \cdot {\color{Red} y} \cdot {\color{Red} {(x - 4)}}} \, = {x-4 \over y} \]


Internetlänkar

http://www03.edu.fi/svenska/laromedel/matematik/nollkurs/pass6.html

http://tutorial.math.lamar.edu/Classes/Alg/RationalExpressions.aspx

http://www.youtube.com/watch?v=FZdt73khrxA&feature=channel

http://www.youtube.com/watch?v=hVIol-6vocY&feature=related



Copyright © 2011-2014 Taifun Alishenas. All Rights Reserved.