1.5 Lösning 6a
Från Mathonline
Version från den 21 september 2012 kl. 13.13 av Taifun (Diskussion | bidrag)
Vi inför
- \[ x\, \] = Förändringsfaktorn </math> per år
- \[ y\, \] = Aktuellt belopp på kontot
Efter \(1\,\) år\[ y \, = \, \;\,12\,000 \cdot 1,065 \]
Efter \(2\,\) år\[ y \, = \, (12\,000 \cdot 1,065) \cdot 1,065 = 12\,000 \cdot (1,065)^2 \]
\( \cdots \)
Efter \(x\,\) år\[ y = ((12\,000 \cdot 1,065) \cdot 1,065) \cdots 1,065 = 12\,000 \cdot (1,065)^x \]
Modellen\[ y = 12\,000 \cdot (1,065)^x \]
är en exponentialfunktion med basen 1,065.