1.2 Övningar till Faktorisering av polynom
Repetition: Faktorisering & Vieta | Teori | Övningar | Fördjupning | Nästa avsnitt --> |
E-övningar: 1-6
Övning 1
Om
- \[ x^3 - 5\,x^2 + 12\,x - 6 = (x-2) \cdot {\rm (ett\ polynom)} \]
vad är då graden till det okända polynomet?
Övning 2
Vi har:
- \[ 4\,x^2 + 16\,x - 8 = (x+3) \cdot {\rm (ett\ polynom)} \]
a) Vad är graden till det okända polynomet?
b) Vad är koefficienten till x-termen i det okända polynomet?
Övning 3
Ange ett polynom i faktorform vars nollställen är:
a) \( {\color{White} x} 2 \, \) och \( 6 \, \)
b) \( {\color{White} x} -2 \, \) och \( -6 \, \)
c) \( {\color{White} x} 1 \, \), och \( -5 \, \) och \( 4 \, \)
Övning 4
Ange nollställen till följande polynom:
a) \( {\color{White} x} (x-2) \cdot (x+1) \)
b) \( {\color{White} x} (3\,x-1) \cdot (2\,x+1) \)
Övning 5
Grafen till en polynomfunktion ser ut så här:
a) Ange några exempel på polynom i faktorform vars nollställen är identiska med kurvans nollställen.
b) Ange det polynom i faktorform vars graf är kurvan ovan.
Övning 6
Faktorisera följande polynom och kontrollera dina svar genom utveckling av de erhållna resultaten:
a) \( {\color{White} x} x^2 - 6\,x + 8 \)
b) \( {\color{White} x} 3\,x^2 + 3\,x - 6 \)
c) \( {\color{White} x} 4\,x^2 - 36 \)
C-övningar: 7-10
Övning 7
Grafen till en polynomfunktion ser ut så här:
Ange det polynom i faktorform vars graf är kurvan ovan.
Övning 8
Faktorisera följande polynom och kontrollera dina svar genom utveckling av de erhållna resultaten. Ange slutresultaten med heltalskoefficienter.
a) \( {\color{White} x} 9\,x^2 - 6\,x + 1 \)
b) \( {\color{White} x} x^2 + 4\,x + 5 \)
c) \( {\color{White} x} 49\,z^2 + 14\,z + 1 \)
Övning 9
Ange den fullständiga faktoriseringen av polynomet
- \[ x^3 - 9\,x^2 + 26\,x - 24 \]
om en av faktorerna är \( (x-4)\, \).
Övning 10
Vi har följande delfaktorisering av ett 3:e gradspolynom:
- \[ x^3 - 17\,x^2 + 54\,x - 8 = (x-4) \cdot {\rm (ett\ polynom)} \]
a) Bestäm det okända polynomet som en summa av termer.
b) Ange 3:e gradspolynomets fullständiga faktorisering. Svara med två decimaler.
A-övningar: 11-14
Övning 11
Följande 4:e gradspolynom är givet och har dubbelroten \( x = -1\,\):
- \[ P(x) = x^4 - 7\,x^3 + 3\,x^2 + 31\,x + 20 \]
a) Ange med hjälp av dubbelroten en delfaktorisering av \( P(x)\,\).
b) Faktorisera \( P(x)\,\) fullständigt.
Övning 12
Anta att polynomet
- \[ P(x) = x^4 + 3\,x^3 - 7\,x^2 - 27\,x - 18 \]
har två nollställen \( a\,\) och \( -a\,\).
a) Bestäm dessa två nollställen och ange en delfaktorisering av \( P(x)\,\).
b) Faktorisera \( P(x)\,\) fullständigt.
Övning 13
Bevisa satsen om faktorisering med 2 nollställen:
Sats: Om 2:gradspolynomet \( x^2 + p\,x + q \) har nollställena \( x_1\, \) och \( x_2\, \) så gäller:
- \[ x^2 + p\,x + q = (x-x_1) \cdot (x-x_2) \]
Ledning: Sätt in p-q-formeln för \( x_1\, \) och \( x_2\, \) i högerledet och utveckla produkten för att visa likheten med vänsterledet.
Övning 14
Faktorisera fullständigt 5:e gradspolynomet \( P(x)\, \):
- \[ P(x) = x^5 - 5\,x^4 + 17\,x^3 - 13\,x^2 \]
a) Börja med en delfaktorisering inom ramen av de reella talen.
b) Fortsätt sedan med fullständig faktorisering till linjära faktorer genom att hitta även \( \, P(x)\):s komplexa rötter.
Facit
1)
\( 2\, \)
2a)
\( 1\, \)
2b)
\( 4\, \)
3a)
\( (x-2) \cdot (x-6) \)
3b)
\( (x+2) \cdot (x+6) \)
3c)
\( (x-1) \cdot (x+5) \cdot (x-4) \)
4a)
\(x_1 = 2 \; {\rm och} \; x_2 = -1 \)
4b)
\( x_1 = {1 \over 3} \; {\rm och} \; x_2 = -{1 \over 2} \)
5a)
\( \begin{align} & (x-2) \cdot (x-5) \\ 2 \; & (x-2) \cdot (x-5) \\ 6 \; & (x-2) \cdot (x-5) \\ -8 \; & (x-2) \cdot (x-5) \\ \end{align}\)
5b)
\( (x-2) \cdot (x-5) \)
6a)
\( (x-2) \cdot (x-4) \)
6b)
\( y = 3 \cdot (x-1) \cdot (x+2) \)
6c)
\( y = 4 \cdot (x+3) \cdot (x-3) \)
7)
\( (x+2) \cdot (x-2) \cdot (x-5) \)
8a)
\( (3\,x - 1)^2 \)
8b)
Går ej att faktorisera.
8c)
\( (7\,z + 1)^2 \)
9)
\( (x-4) \cdot (x-2) \cdot (x-3) \)
10a)
\( x^2 - 13\,x + 2 \)
10b)
\( (x-4) \cdot (x-0,16) \cdot (x -12,84) \)
11a)
\( (x+1)^2 \cdot (x^2 - 9\,x + 20) \)
11b)
\( (x+1)^2 \cdot (x-4) \cdot (x - 5) \)
12a)
\( x_1 = 3\, \)
\( x_2 = -3\, \)
\( (x+3) \cdot (x-3) \cdot (x^2 + 3\,x + 2) \)
12b)
\( (x+3) \cdot (x-3) \cdot (x+1) \cdot (x+2) \)
Copyright © 2011-2014 Taifun Alishenas. All Rights Reserved.