Diskussion:2.2 Genomsnittlig förändringshastighet
Exempel 1 Marginalskatt
Martins månadslön höjs från 23 000 kr till 24 200 kr. I Skatteverkets skattetabell för 2014 (sida 2, kolumn 2) hittar vi 5 302 kr skatt för den gamla och 5 681 kr skatt för den nya lönen.
Beräkna skattens genomsnittliga förändringshastighet som kallas marginalskatt.
Lösning:
Skatten ökar med lönen. Den är beroende av lönen. Detta innebär att skatten är en funktion av lönen. Vi inför följande beteckningar:
- \[ x \, = \, {\rm Månadslönen\;i\;kr} \]
- \[ y \, = \, {\rm Skatten\;i\;kr} \]
Då blir \( y\, \) är en funktion av \( x\, \) som i det här fallet inte är definierad med en formel utan i tabellform:
\( x\, \) \( y\, \) \( 23\,000 \) \( 5\,302 \) \( 24\,200 \) \( 5\,681 \)
Marginalskatten är skattens genomsnittliga förändringshastighet, dvs:
- \[ {\Delta y \over \Delta x} = {y\, {\rm:s\;ändring} \over x\, {\rm:s\;ändring}} = {{\rm Skattehöjningen} \over {\rm Lönehöjningen}} = {5\,681 - 5\,302 \over 24\,200 - 23\,000} \; = \; {379 \over 1200} \; = \; 0,316 \; = \; 31,6 \, \%\]
Marginalskatten är därmed \(31,6 \, \% \), vilket i praktiken innebär att Martin måste betala \(31,6\,\) öre i skatt för varje mer intjänad krona.
Matematiskt uttryckt har vi beräknat funktionen \(\,y\):s genomsnittliga förändringshastighet i det betraktade \(\,x\)-intervallet.