3.2 Lösning 10b

Från Mathonline
Version från den 26 december 2014 kl. 13.29 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök
\[ A(x) \, = \, -\,{2 \over 3}\,x^2 \, + \, 20\,x \]
\[ A'(x) \, = \, -\,{4 \over 3}\,x \, + \, 20 \]
\[ A''(x) \, = \, -\,{4 \over 3} \]

Derivatans nollställe:

\[\begin{array}{rcrcl} A'(x) & = & -{4 \over 3}\,x + 20 & = & 0 \\ & & 20 & = & {4 \over 3}\,x \\ & & {20 \cdot 3 \over 4} & = & x \\ & & x & = & 15 \end{array}\]

Andraderivatans tecken för \( \, x = 15 \, \):

\[ A''(10) = -\,{4 \over 3} \,<\, 0 \]

Andraderivatan är negativ för \( \, x = 15 \, \). Därav följer att \( A(x) \, \) har ett maximum i \( \, x = 15 \, \).

Rektangeln når sin största area för \( \, x = 15 \, \).