Skillnad mellan versioner av "1.5a Lösning 10a"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 1: Rad 1:
<math> f(x) = {3\,x^2 + 6\,x + 12 \over x^2 - 4} = {3\,(x^2 + 2\,x + 4) \over (x + 2)\,(x - 2)} =  </math>  
+
<math> f(x) = {3\,x^2 + 6\,x + 12 \over x^2 - 4} = {3\,(x^2 + 2\,x + 4) \over (x + 2)\,(x - 2)} =  {3\,(x + 2)^2 \over (x + 2)\,(x - 2)} = </math>  
  
  
<math> = {3\,(x + 2)^2 \over (x + 2)\,(x - 2)} =                </math>
+
<math> = {3\,{\color{Red}(x + 2)}\,(x + 2) \over {\color{Red}(x + 2)}\,(x - 2)} =                </math>
  
  
  
 
<math> {x^2 - 9 \over x-3} = {(x+3)\,{\color{Red} (x-3)} \over {\color{Red} (x-3)}} = x+3 </math>
 
<math> {x^2 - 9 \over x-3} = {(x+3)\,{\color{Red} (x-3)} \over {\color{Red} (x-3)}} = x+3 </math>

Versionen från 16 juli 2014 kl. 23.27

\( f(x) = {3\,x^2 + 6\,x + 12 \over x^2 - 4} = {3\,(x^2 + 2\,x + 4) \over (x + 2)\,(x - 2)} = {3\,(x + 2)^2 \over (x + 2)\,(x - 2)} = \)


\( = {3\,{\color{Red}(x + 2)}\,(x + 2) \over {\color{Red}(x + 2)}\,(x - 2)} = \)


\( {x^2 - 9 \over x-3} = {(x+3)\,{\color{Red} (x-3)} \over {\color{Red} (x-3)}} = x+3 \)