Skillnad mellan versioner av "Exponentialfunktioner och logaritmer"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m (→Exponentialfunktioner & exponentialekvationer) |
||
Rad 10: | Rad 10: | ||
__TOC__ | __TOC__ | ||
− | == Exponentialfunktioner | + | == Exponentialfunktioner == |
Logaritm är ett annat ord för exponent. Därför börjar vi logaritmavsnittet med ett inledande exempel på sådana funktioner som har sin oberoende variabel x i exponenten. | Logaritm är ett annat ord för exponent. Därför börjar vi logaritmavsnittet med ett inledande exempel på sådana funktioner som har sin oberoende variabel x i exponenten. |
Versionen från 18 december 2012 kl. 10.05
Teori | Övningar |
Innehåll
Exponentialfunktioner
Logaritm är ett annat ord för exponent. Därför börjar vi logaritmavsnittet med ett inledande exempel på sådana funktioner som har sin oberoende variabel x i exponenten.
Exponential- och potensekvationer
Själva aktionen \( a^x\, \) dvs att ta \( a\, \) upphöjt till \( x\, \) kallas exponentiering och är en ny räkneoperation jämfört med de fyra räknesätten. När x är lika med 2 pratar man om kvadrering.
Anta i fortsättningen att \( x\, \) är en okänd variabel och \( b\, \) och \( c\, \) givna konstanter \( \neq 0 \) . Då kallas
- funktioner av typ \( y = 10^x\, \) exponentialfunktioner, generellt\[ y = c \cdot a^x\, \].
- ekvationer av typ \( 10^x\,= 125 \) exponentialekvationer, generellt\[ a^x\, = b \].
- funktioner av typ \( y = x^3\, \) potensfunktioner, generellt\[ y = c \cdot x^b\, \].
- ekvationer av typ \( x^3\, = 8 \) potensekvationer, generellt\[ x^b\, = c \].
I exponentialfunktioner och -ekvationer förekommer x i exponenten. I potensfunktioner och -ekvationer förekommer x i basen. Medan exponentialekvationer löses genom logaritmering (se avsnitt 1.6 Logaritmer), löses potensekvationer genom rotdragning. För t.ex. potensekvationen \( x^3\, = 8 \) finns det två olika sätt att beskriva lösningen via rotdragning:
- \[\begin{align} x^3 & = 8 \qquad & | \; \sqrt[3]{\;\;} \\ \sqrt[3]{x^3} & = \sqrt[3]{8} \\ x & = 2 \\ \end{align}\]
Alternativt (med bråktal som exponent):
- \[\begin{align} x^3 & = 8 \qquad & | \; (\;\;\;)^{1 \over 3} \; \text{samma som} \; \sqrt[3]{\;\;} \\ (x^3)^{1 \over 3} & = 8^{1 \over 3} \\ x^{3\cdot{1 \over 3}} & = 8^{1 \over 3} \\ x & = 2 \\ \end{align}\]
Det alternativa sättet att lösa ekvationen \( x^3 = 8\, \) visar att rotdragning kan även uppfattas och skrivas som exponentiering med bråktalsexponenter. För att förstå detta måste man känna till potenslagarna som behandlades ovan. Dessa gäller även för exponenter som är negativa eller bråktal, även om vi inledningsvis definierade potensbegreppet för enkelhets skull endast för positiva heltalsexponenter.
Logaritmbegreppet
- Se nästa avsnitt om logaritmlagarna.
Internetlänkar
http://www.youtube.com/watch?v=rYHdUrKqxaU
http://goto.glocalnet.net/larsthomee/logaritm.html
http://www.kck.amal.se/webtutor/ovel/mattec/Funktioner/F3.html
http://wiki.math.se/wikis/sf0600_0701/index.php/3.3_Logaritmer
Copyright © 2010-2012 Taifun Alishenas. All Rights Reserved.