Skillnad mellan versioner av "1.4 Lösning 6c"
Från Mathonline
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 1: | Rad 1: | ||
− | <math> \left({2\,a - 4 \over a^2}\right)\, \ | + | <big><big><math> \left({2\,a - 4 \over a^2}\right)\, \Big / \,\left({a^2 - 4 \over a^4}\right) \, = \, \left({2\,a - 4 \over a^2}\right)\, \cdot \,\left({a^4 \over a^2 - 4}\right) \, = \, {(2\,a - 4) \cdot a^4 \over a^2 \cdot (a^2 - 4)} \, = </math> |
− | <math> = \; {(2\,a - 4) \cdot a^2 \over (a^2 - 4)} \; = \; {2\,(a - 2) \cdot a^2 \over (a + 2) \cdot (a-2)} \; = \; {2\,a^2 \over (a + 2)} </math> | + | <math> = \; {(2\,a - 4) \cdot a^2 \over (a^2 - 4)} \; = \; {2\,(a - 2) \cdot a^2 \over (a + 2) \cdot (a-2)} \; = \; {2\,a^2 \over (a + 2)} </math></big></big> |
Versionen från 2 augusti 2014 kl. 22.39
\( \left({2\,a - 4 \over a^2}\right)\, \Big / \,\left({a^2 - 4 \over a^4}\right) \, = \, \left({2\,a - 4 \over a^2}\right)\, \cdot \,\left({a^4 \over a^2 - 4}\right) \, = \, {(2\,a - 4) \cdot a^4 \over a^2 \cdot (a^2 - 4)} \, = \)
\( = \; {(2\,a - 4) \cdot a^2 \over (a^2 - 4)} \; = \; {2\,(a - 2) \cdot a^2 \over (a + 2) \cdot (a-2)} \; = \; {2\,a^2 \over (a + 2)} \)