Skillnad mellan versioner av "1.4 Lösning 8b"

Från Mathonline
Hoppa till: navigering, sök
m
m
 
(2 mellanliggande versioner av samma användare visas inte)
Rad 1: Rad 1:
<math> {1-x \over x+1} - {1+x \over 1-x} + {4\,x \over 1-x^2} \; = \; {1-x \over 1+x} - {1+x \over 1-x} + {4\,x \over (1+x)\cdot(1-x)} \; = \; </math>
+
<big><big><math> {1-x \over x+1} - {1+x \over 1-x} + {4\,x \over 1-x^2} \; = \; {1-x \over 1+x} - {1+x \over 1-x} + {4\,x \over (1+x)\cdot(1-x)} \; = \; </math>
  
  
Rad 7: Rad 7:
 
<math> = {(1-x)^2 - (1+x)^2 + 4\,x \over (1+x)\cdot(1-x)} = {1-2\,x+x^2 - (1+2\,x+x^2) + 4\,x \over (1+x)\cdot(1-x)} = </math>
 
<math> = {(1-x)^2 - (1+x)^2 + 4\,x \over (1+x)\cdot(1-x)} = {1-2\,x+x^2 - (1+2\,x+x^2) + 4\,x \over (1+x)\cdot(1-x)} = </math>
  
<math> = {1 - 2x + x^2 - 1 - 2x - x^2 + 4x \over (1+x)(1-x)} = {- 4x + 4x \over (1+x)(1-x)} = {0 \over (1+x)(1-x)} = 0 </math>
+
 
 +
<math> = {1 - 2x + x^2 - 1 - 2x - x^2 + 4x \over (1+x)\cdot(1-x)} \; = \; {- 4\,x + 4\,x \over (1+x)\cdot(1-x)} \; = \; {0 \over \dots} \; = \; 0 </math></big></big>

Nuvarande version från 3 augusti 2014 kl. 11.49

\( {1-x \over x+1} - {1+x \over 1-x} + {4\,x \over 1-x^2} \; = \; {1-x \over 1+x} - {1+x \over 1-x} + {4\,x \over (1+x)\cdot(1-x)} \; = \; \)


\( = \; {(1-x)\cdot(1-x) \over (1+x)\cdot(1-x)} - {(1+x)\cdot(1+x) \over (1-x)\cdot(1+x)} + {4\,x \over (1+x)\cdot(1-x)} \; = \; \)


\( = {(1-x)^2 - (1+x)^2 + 4\,x \over (1+x)\cdot(1-x)} = {1-2\,x+x^2 - (1+2\,x+x^2) + 4\,x \over (1+x)\cdot(1-x)} = \)


\( = {1 - 2x + x^2 - 1 - 2x - x^2 + 4x \over (1+x)\cdot(1-x)} \; = \; {- 4\,x + 4\,x \over (1+x)\cdot(1-x)} \; = \; {0 \over \dots} \; = \; 0 \)